М698. Задача о центрах прямоугольников

Условие

На сторонах [latex]a, b, c, d[/latex] вписанного в окружность четырехугольника «наружу» построены прямоугольники размерами [latex]a\times c, b\times d,[/latex][latex]c\times a, d\times b[/latex]. Докажите, что центры этих прямоугольников являются вершинами а)параллелограмма, б)прямоугольника.

Решение


а) Пусть [latex]M, P, N, Q[/latex] — центры прямоугольников, построенных на сторонах [latex]AB, BC, CN, DA[/latex] вписанного четырехугольника [latex]ABCD[/latex] (см. рисунок).
Поскольку в четырехугольнике, вписанном в окружность, суммы противоположных углов равны [latex]180\textdegree[/latex] , а прямоугольники, построенные на противоположных сторонах, конгруэнтны, то [latex]\angle MBP = \angle NDQ[/latex] и [latex]\angle NCP = \angle MAQ[/latex] (мы рассматриваем углы, меньшие [latex]180\textdegree[/latex]). Таким образом, треугольник [latex]MBP[/latex] подобен [latex]NDC[/latex] и треугольник [latex]NCP[/latex] подобен [latex]MAQ[/latex]. Отсюда [latex]\mid MP \mid = \mid NQ \mid[/latex] и [latex]\mid NP \mid = \mid MQ \mid[/latex], а это означает, что четырехугольник [latex]MPNQ[/latex] — параллелограмм.
б) Можно считать, что сторона [latex]MQ[/latex] параллелограмма видна из точки [latex]A[/latex] изнутри параллелограмма, сторона [latex]PN[/latex] видна из точки [latex]C[/latex] снаружи и, аналогично, сторона [latex]MP[/latex] видна из точки [latex]B[/latex] изнутри, а сторона [latex]NQ[/latex] из точки [latex]D[/latex] видна снаружи. Тогда расположение всех отрезков и треугольников будет таким, как показано на рисунке. Докажем, что, [latex]\angle MPN + \angle NQM = 180\textdegree[/latex] (отсюда будет следовать, что [latex]\angle MPN = \angle NQM = 90\textdegree[/latex]). Эта сумма, очевидно, равна [latex]\angle BPC + \angle DQA = 180\textdegree[/latex], поскольку [latex]\angle BPM = \angle DQN[/latex], а [latex]\angle CPN = \angle AQM[/latex].

М838. О разбиении точек, лежащих на сторонах треугольника, на множества

Задача из журнала “Квант” (1984, №3)

Условие

Все точки, лежащие на сторонах правильного треугольника $ABC$ разбиты на два множества $E_{1}$ и $E_{2}$. Верно ли, что для любого такого разбиения в одном из множеств $E_{1}$ и $E_{2}$ найдется тройка вершин прямоугольного треугольника?

рис. 1

Ответ

Верно.

Доказательство

Доказательство проведем от противного. Пусть точки множества $E_{1}$ окрашены синим цветом, множества $E_{2}$ – красным. Предположим, что не существует прямоугольного треугольника с одноцветными вершинами, и рассмотрим правильный шестиугольник, вписанный в треугольник $ABC$ (см. рисунок 1). Каждые две его противоположные вершины должны быть окрашены по-разному — если, например, противоположные вершины $P$ и $Q$ синие, то любая из остальных четырех вершин должна быть красной, так как образует вместе с $P$ и $Q$ прямоугольный треугольник: но тогда любые три из этих красных точек образуют запрещенный одноцветный прямоугольный треугольник.

рис. 2

Ясно, что в таком случае найдутся две соседние разноцветные вершины шестиугольника. Либо эти две вершины, либо противоположные им (тоже разноцветные!) лежат на одной из сторон треугольника. Пусть для определенности на стороне $AB$ лежат синяя вершина $К$ и красная $L$, тогда противоположные им вершины $K’$ и $L’$ будут красной и синей (см. рисунок 3). Но тогда в какой бы цвет ни была окрашена вершина $А$, один из
прямоугольных треугольников $AKL’$ и $ALK’$ будет одноцветным. Противоречие.

рис. 3

Это рассуждение показывает, что даже множество из восьми точек — вершин шестиугольника и любых двух вершин треугольника — нельзя разбить на подмножества без прямоугольных треугольников.

Н.Б. Васильев, В.Н. Дубровский

M1421

Задача о неравенстве выпуклого четырехугольника

Условие

  1. В выпуклый четырехугольник $latex ABCD$, у которого углы при вершинах $latex B $ и $latex D $ — прямые, вписан четырехугольник с периметром $latex P $ (его вершины лежат по одной на сторонах четырехугольника $latex ABCD$). Докажите неравенство $latex P \geqslant 2BD$
  2. В каких случаях это неравенство превращается в равенство?

Решение

  1. Пусть $latex EFKL $ — четырехугольник, вписанный в $latex ABCD $ (см рис.). Обозначим через $latex M $ и $latex N $ середины отрезков $latex EF $ и $latex KL $ соответсвенно. Мы докажем неравенство задачи в более общем случае : $latex \angle B \geq \frac{\pi}{2} $ , $latex \angle D \geq \frac{\pi}{2}$.
    При этом

    $latex BM \leq \frac{1}{2}EF , DN \leq\frac{1}{2}KL $
    (*)

    Далее, так как $latex \vec{MN }=\frac{1}{2}\left ( \vec{EK} +\vec{FL}\right ) $, то

    $latex \left | \vec{MN} \right | \leq \frac{1}{2}\left ( EK+FL \right )$.
    (**)

    Поскольку $latex BM+MN+ND+ND \geq BD. $
    получаем из (*), (**) неравенство задачи.

  2. Равенство (*) имеет место, если $latex \angle B=\frac{\pi}{2}, \angle D=\frac{\pi}{2}$.
    Неравенство (**) переходит в равенство, если $latex EK||FK||MN. $ Кроме этого, в случае равенства точки $latex B,M,N,D $ лежат на одной прямой.
    Из вышесказанного получаем следующий способ построения всех четырехугольников, для которых неравенство задачи превращается в равенство.
    Пусть $latex O — $ точка пересечения $latex AC $ и $latex BD, AO \leq OC. $ Проведем через произвольную точку отрезка $latex AO $ прямую $latex EK, $ параллельную $latex BD\left ( E\in AB, K \in AD \right ) $. Симметрично отобразив прямую EK относительно $latex BD, $ получим противоположную сторону $latex FL $ четырехугольника.

Г. Нерсисян