Критерий Коши равномерной сходимости несобственных интегралов, зависящих от параметра

Для равномерной сходимости несобственного интеграла $\int\limits_a^b f(x,y)dx$ необходимо и достаточно выполнение условия Коши. А именно: $\forall \varepsilon > 0 \, \exists \eta < b$ такое, что $\forall \eta^\prime,\eta^{\prime\prime} \epsilon (\eta,b)$ и $\forall y$ $\epsilon$ $Y$ выполнялось следующее неравенство $$\left|\int\limits_{\eta^\prime}^{\eta^{\prime\prime}}f(x,y)dx \right| <\varepsilon.$$

Доказательство

Необходимость

Пусть интеграл $\int\limits_a^b f(x,y)dx$ равномерно сходится по параметру $y$ $\epsilon$ $Y$. Из определения получаем, что $\forall\varepsilon > 0$ найдется такое $\eta$ $\epsilon$ $[a,b)$ , что $\forall \eta^\prime$ $\epsilon$ $[b,\eta)$ и для всех $y$ $\epsilon$ $Y$ выполнялось следующее неравенство
$$\left| \int\limits_{\eta^\prime}^{b}f(x,y)dx \right| < \frac{\varepsilon}{2}.$$ При $\eta^\prime , \eta^{\prime\prime}$ $\epsilon$ $[\eta,b)$, $y$ $\epsilon$ $Y$ получим такое неравенство $$\left| \int\limits_{\eta^\prime}^{\eta^{\prime\prime}}f(x,y)dx \right| = \left| \int\limits_{\eta^\prime}^{b}f(x,y)dx — \int\limits_{\eta^{\prime\prime}}^{b}f(x,y)dx \right| \leq $$ $$\leq \left|\int\limits_{\eta^\prime}^{b}f(x,y)dx\right| + \left|\int\limits_{\eta^{\prime\prime}}^{b}f(x,y)dx\right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} =\varepsilon,$$ а значит, что условие Коши выполнено.

Достаточность

Положим, что условие Коши выполняется. А это означает, что в силу критерия Коши несобственный интеграл $\int\limits_a^b f(x,y)dx$ сходится $\forall y$ $\epsilon$ $Y$. Докажем равномерную сходимость на $Y$. Рассмотрим неравенство $$\left|\int\limits_{\eta^\prime}^{\eta^{\prime\prime}}f(x,y)dx \right| <\varepsilon,$$ в котором устремим $\eta^{\prime\prime}$ к $b$, при этом $\eta^{\prime\prime} < b$. В результате для любого $\eta^{\prime} > \eta$ и $y$ $\epsilon$ $Y$ получаем следующее: $$\left|\int\limits_{\eta^{\prime}}^{b}f(x,y)dx \right| \leq\varepsilon,$$ что и означает равномерную сходимость интеграла $\int\limits_a^b f(x,y)dx$ на $Y$. $\Box$

Пример

Проверить интеграл на равномерную сходимость.

$$\int\limits_{0}^{+\infty} e^{-yx^{2}}dx$$

Решение

Данный интеграл сходится $\forall y > 0$. Если он сходится равномерно, то для любых (фиксированных) $\eta^{\prime},\eta^{\prime\prime}\geq\eta$ и при всех $y>0$ выполняется неравенство

$$\int\limits_{\eta^{\prime}}^{\eta^{\prime\prime}} e^{-yx^{2}}dx <\varepsilon. (\bigstar)$$

По теореме о непрерывности собственного интеграла, зависящего от параметра, интеграл в левой части представляет собой непрерывную функцию переменной $y$. Отсюда $$F(y) \equiv \int\limits_{\eta^\prime}^{\eta^{\prime\prime}} e^{-yx^{2}}dx \rightarrow F(0) = \eta^{\prime\prime} — \eta^\prime (y \rightarrow 0).$$

Так как $F(y) <\varepsilon$, то и  $F(0) = \lim\limits_{y \rightarrow 0}F(y) \leq\varepsilon$, что означает $\eta^{\prime\prime} — \eta^\prime \leq\varepsilon$. Однако из-за того, что $\eta^\prime,\eta^{\prime\prime}$ $\epsilon$ $[\eta, +\infty)$ можно выбрать таким образом, что $\eta^{\prime\prime} — \eta^\prime$ будет сколь угодно большим, неравенство $\bigstar$ не выполняется для всех $\eta^\prime,\eta^{\prime\prime}$ из полуинтервала $[\eta, +\infty)$. Значит, условие Коши для этого интеграла нарушено и он не является равномерно сходящимся. $\Box$

[свернуть]

Список литературы

Тест

Практические задания из данного теста были позаимствованы из сборника задач и упражнений по математическому анализу Б.П. Демидовича.

Рекомендую проверить насколько хорошо усвоен материал, пройдя следующий тест.

Таблица лучших: Критерий Коши равномерной сходимости несобственных интегралов, зависящих от параметра

максимум из 14 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Несобственные интегралы, зависящие от параметра, равномерная сходимость.

Оглавление

  1. Несобственный интеграл, зависящий от параметра. Определение.
  2. Равномерная сходимость
  3. Примеры
  4. Список литературы
  5. Тесты

Несобственный интеграл, зависящий от параметра

Пусть функция двух переменных $f(x,y)$ определена на данной области: $\{a \leq x < + \infty, c \leq y \leq d\}$ (см. рисунок), и при каждом фиксированном $y \, \epsilon \, [c,d]$ существует несобственный интеграл $ \int\limits_{a}^{+\infty} f(x,y)\,dx$, являющийся функцией от $y$. Тогда функция $I(y) = \int\limits_{a}^{+\infty} f(x,y)\,dx$ $y \, \epsilon \, [c,d]$ называется несобственным интегралом первого рода, зависящим от параметра $y$. Также, интервал $[c,d]$ может быть бесконечным.

Возьмем функцию $f(x,y)$. Интеграл вида $ \int\limits_a^b f(x,y)\,dx$ является сходящимся на множестве $Y$, при выполнении следующих условий:

  1. $- \infty < a < b   \leq + \infty $
  2. функция $f(x,y)$ определена на $[a, b)   \times Y$, где $Y$ является множеством параметров.
  3. $ \forall \eta$ $\epsilon$ $[a,b)$ и $y$ $\epsilon$ $Y$ функция $f(x,y)$ интегрируема по Риману на отрезке $[a, \eta ]$.
  4. $ \forall y$ $\epsilon$ $Y$ несобственный интеграл $ \int\limits_a^b f(x,y)dx$ сходится.

Можно сделать вывод, что несобственный интеграл $ \int\limits_a^b f(x,y)dx$ сходится на $Y$, при условии, что $\forall y$ $\epsilon$ $Y$ и для любого числа $\varepsilon > 0$ существует такое $\eta(y, \varepsilon) < b$, такое, что для любого $\eta^\prime \, \epsilon (\eta, b)$ выполняется неравенство  $$\left|\int\limits_{\eta^\prime}^{b} f(x,y)dx\right| <\varepsilon .$$

Читать далее «Несобственные интегралы, зависящие от параметра, равномерная сходимость.»

М838. О разбиении точек, лежащих на сторонах треугольника, на множества

Задача из журнала “Квант” (1984, №3)

Условие

Все точки, лежащие на сторонах правильного треугольника $ABC$ разбиты на два множества $E_{1}$ и $E_{2}$. Верно ли, что для любого такого разбиения в одном из множеств $E_{1}$ и $E_{2}$ найдется тройка вершин прямоугольного треугольника?

рис. 1

Ответ

Верно.

Доказательство

Доказательство проведем от противного. Пусть точки множества $E_{1}$ окрашены синим цветом, множества $E_{2}$ – красным. Предположим, что не существует прямоугольного треугольника с одноцветными вершинами, и рассмотрим правильный шестиугольник, вписанный в треугольник $ABC$ (см. рисунок 1). Каждые две его противоположные вершины должны быть окрашены по-разному — если, например, противоположные вершины $P$ и $Q$ синие, то любая из остальных четырех вершин должна быть красной, так как образует вместе с $P$ и $Q$ прямоугольный треугольник: но тогда любые три из этих красных точек образуют запрещенный одноцветный прямоугольный треугольник.

рис. 2

Ясно, что в таком случае найдутся две соседние разноцветные вершины шестиугольника. Либо эти две вершины, либо противоположные им (тоже разноцветные!) лежат на одной из сторон треугольника. Пусть для определенности на стороне $AB$ лежат синяя вершина $К$ и красная $L$, тогда противоположные им вершины $K’$ и $L’$ будут красной и синей (см. рисунок 3). Но тогда в какой бы цвет ни была окрашена вершина $А$, один из
прямоугольных треугольников $AKL’$ и $ALK’$ будет одноцветным. Противоречие.

рис. 3

Это рассуждение показывает, что даже множество из восьми точек — вершин шестиугольника и любых двух вершин треугольника — нельзя разбить на подмножества без прямоугольных треугольников.

Н.Б. Васильев, В.Н. Дубровский