Ф676. Движение рамки в магнитном поле

Задача из журнала «Квант» (1981 год, 1 выпуск)

Условие

Рис.1

Проволочной квадратной рамке с периметром $4a$ и массой $m$ сообщают в горизонтальном направлении некоторую начальную скорость. Рамка движется в вертикальной плоскости, все время находясь в магнитном поле, перпендикулярном плоскости рамки (см. рис.1). Индукция поля меняется по закону $B\left( \text{z}\right) = B\left( 0 \right) + k\text{z}$, где $k = const.$ Сопротивление рамки равно $R.$ Через некоторое время скорость рамки становится постоянной и равной $v.$ Найти начальную скорость, сообщаемую рамке. Ускорение свободного падения $\text{g}.$

Решение

Рис.2

В отсутствие магнитного поля рамка двигалась бы в поле тяжести Земли с постоянной горизонтальной скоростью $\vec{v}_{0}$ вдоль оси $X$ и равноускоренно с ускорением свободного падения $\vec{\text{g}}$ вдоль оси $\text{z}$. Очевидно, что движение рамки не изменилось бы, если бы она падала в однородном магнитном поле. В нашем случае поле — не однородное (вдоль оси $\text{z}$): $B\left( \text{z} \right) = B\left( 0 \right) + k\text{z}$, то есть индукция поля линейно растет с ростом $\text{z}$; поэтому при падении рамки поток магнитной индукции $\Phi$, пронизывающий контур рамки, будет меняться и в контуре рамки будет возникать ЭДС индукции. Поскольку рамка является замкнутым проводящим контуром, по ней потечет индукционный ток. В этом случае, согласно закону Ампера, на стороны рамки будут действовать силы со стороны магнитного поля. Найдем направления и величины этих сил.

Пусть в некоторый момент времени центр масс рамки находится в точке с координатами $x_{t},\text{z}_{t}$ и проекции скорости центра масс на оси $X$ и $\text{z}$ равны $v_{x}$ и $v_{\text{z}}$ (см. рис.2). Поток магнитной индукции $\Phi$, пронизывающий рамку в этот момент времени, равен $$\Phi=\frac{\left(B_{0}+k\left(\text{z}_{t}-\frac{a}{2}\right)\right)+\left(B_{0}+k\left(\text{z}_{t}+\frac{a}{2}\right)\right)}{2} a^{2}=\left(B_{0}+k \text{z}_{1}\right) a^{2}.$$ Здесь $B_{0}+k\left(\text{z}_{t}-\frac{a}{2}\right)$ и $B_{0}+k\left(\text{z}_{t}+\frac{a}{2}\right)$— значения индукции магнитного поля соответственно у верхней и нижней сторон рамки; поскольку зависимость $B_{\text{z}}$—  линейная, для вычисления $\Phi$ мы пользуемся средним ( по высоте $\text{z}$) значением индукции.

ЭДС индукции в рамке в данный момент времени равна $$|\mathscr{E}|=\frac{|\Delta \Phi|}{\Delta t}=k a^{2} \frac{|\Delta \text{z}|}{\Delta t}=k a^{2}\left|v_{2}\right|.$$ индукционный ток равен $$I=\frac{|\mathscr{E}|}{R}=\frac{k a^{2}}{R}\left|v_{\text{z}}\right|.$$ Согласно правилу Ленца, возникающий в рамке ток будет течь против часовой стрелки. По закону Ампера со стороны магнитного поля в верхнюю сторону рамки будет действовать сила $$\left|\vec{F}_{1}\right|=\left(B_{0}+k\left(\text{z}_{t}-\frac{a}{2}\right)\right) I a=\left(B_{0}+k\left(\text{z}_{t}-\frac{a}{2}\right)\right) \frac{k a^{3}}{R}\left|v_{\text{z}}\right|.$$ на нижнюю сторону — сила $$\left|\vec{F}_{2}\right|=\left(B_{0}+k\left(\text{z}_{t}+\frac{a}{2}\right)\right) I a=\left(B_{0}+k\left(\text{z}_{t}+\frac{a}{2}\right)\right) \frac{k a^{3}}{R}\left|v_{\text{z}}\right|.$$Силы $\vec{F}_{3}$ и $\vec{F}_{4}$, действующие на боковые стороны рамки, очевидно, будут равны по величине и противоположны по знаку: $$\left|\vec{F}_{3}\right|=\left|\vec{F}_{4}\right|=\frac{\left(B_{0}+k\left(\text{z}_{t}-\frac{a}{2}\right)\right)+\left(B_{0}+k\left(\text{z}_{t}+\frac{a}{2}\right)\right)}{2}Ia=$$ $$=\left(B_{0}+k \text{z}_{t}\right) \frac{k a^{3}}{R}\left|v_{\text{z}}\right|.$$ $$\vec{F}_{3}+\vec{F}_{4}=0.$$Следовательно, $v_{x}=const$, то есть рамка будет двигаться вдоль оси $X$ с постоянной скоростью, равной начальной скорости $v_{0}$.

Таким образом, характер движения рамки в направлении оси $\text{z}$ определяется силами $\vec{F}_{1},\vec{F}_{2}$ и силой тяжести $m \vec{\text{g}}\text{g}$. При установившейся скорости $v$ рамки проекция скорости на ось $\text{z}$ постоянна, то есть ускорение $\vec{a}_{\text{z}}$ вдоль оси $\text{z}$ равно нулю: $$m\left|\vec{a}_{\text{z}}\right|=m|\vec{\text{g}}|+\left|\vec{F}_{1}\right|-\left|\vec{F}_{2}\right|=m \text{g}-\frac{k^{2} a^{4}}{R}\left|v_{\text{z}}\right|=0.$$ Отсюда находим проекцию $v_{уст.\text{z}}$ на ось $\text{z}$ установившейся скорости рамки: $$v_{уст.\text{z}}=\frac{m \text{g} R}{k^{2} a^{4}}.$$ Установившаяся скорость рамки равна $v=\sqrt{v_{0}^{2}+v_{уст \text{z}.}^{2}}$, где $v_{0}$ — проекция скорости $v$ на ось $X$, равная, как мы показали, начальной скорости,  сообщенной рамке. Таким образом, $$v_{0}=\sqrt{v^{2}-v^{2}_{уст. \text{z}}}=\sqrt{v^{2}-\left(\frac{m \text{g} R}{k^{2} a^{4}}\right)^{2}}.$$

Скорость $v_{уст.\text{z}}$ может быть найдена и из энергетических соображений. При установившемся движении рамки изменение за время $\Delta t$ потенциальной энергии рамки в поле тяжести Земли равно тепловой энергии, выделяющейся за это время в рамке: $$m \text{g} v_{уст. \text{z}} \Delta t=I_{уст.}^{2} R \Delta t=\left(\frac{k a^{2}}{R}\right)^{2} v^{2}_{уст. \text{z}} R \Delta t.$$ Отсюда $$v_{уст. \text{z}}=\frac{m \text{g} R}{k^{2} a^{4}}.$$

В. Можаев

Ф1980. Задача о проводе и сверхпроводящем кольце

Задача из журнала «Квант» (2005 год, 5 выпуск)

Условие

В одной плоскости с длинным прямым проводом закреплено маленькое сверхпроводящее кольцо из очень тонкого провода. Диаметр кольца $d = 1\, \text{см}$, центр кольца находится на растоянии $H = 1 \, \text{м}$ от провода, индуктивность кольца $L = 10 \, \text{мкГн}$. По проводу пропускают электрический ток — сила тока быстро возрастает от нуля до $I = 10 \, \text{А}$. Какой установившийся ток потечет по кольцу? Какая сила при этом будет действовать на кольцо?

Решение

Магнитная индукция поля длинного прямого провода с током $I$ на расстоянии $x$ от него равна $$ B = \frac {\mu_0 I} {2 \pi x}.$$
Кольцо маленькое — по сравнению с расстоянием $H$ от провода, для расчета магнитного потока будем считать поле однородным в пределах кольца. Контур сверхпроводящий, поэтому полный магнитный
поток через него должен остаться нулевым. Тогда получим $$ L I_k = \frac {\mu_0 I} {2 \pi x} \frac {\pi d^2}{4}.$$
Отсюда найдем установившийся ток в кольце: $$ I_k = \frac {\mu_0 I d^2} {8 H L} \approx 1{,}5 \cdot 10^{-5} \, \text {А}.$$
Для расчета силы, действующей на кольцо, поле уже нельзя считать однородным — в этом случае сила получилась бы точно равной нулю.

Удобно взять малые диаметрально противоположные кусочки кольца (см. рисунок) — проекции сил на направление вдоль провода нас не интересуют, понятно, что в сумме они дадут ноль. В проекции на перпендикулярное к проводу направление получим
$$
d F_1 = B_1 I_k R d \varphi, d F_2 = B_2 I_k R d \varphi, \\
(d F_1 — d F_2) \cos {\varphi} = \mu_0 I I_k R \cos {\varphi} d \varphi \cdot \left (\frac {1} {2 \pi (H — R \cos {\varphi})} — \\ — \frac {1} {2 \pi (H + R \cos {\varphi})} \right) = \frac {\mu_0 I I_k R^2 \cos {\varphi}^2 d \varphi} {\pi( H^2 — R^2 \cos {\varphi}^2}.
$$
Учтем, что радиус кольца $R$ намного меньше $H$, и упростим выражение:
$$
(d F_1 — d F_2) \cos {\varphi} \approx \frac {\mu_0 I I_k R^2 \cos^2 {\varphi} d \varphi} {\pi H^2}.
$$
Нужно просуммировать полученные силы по всем частям окружности, тогда полная сила будет
$$
F = \frac {\mu_0 I I_k R^2 } {\pi H^2} \int {\cos^2 {\varphi} d \varphi} =
\frac {\mu_0 I I_k R^2 } {2 H^2} = \frac {\mu^2_0 I^2 d^4 } {64 H^3 L} \approx 2{,}5 \cdot 10^{-15} \, \text {Н}.
$$

З. Сильнов

М1821. Доказать неравенство

Задача из журнала «Квант» (2002 год, 3 выпуск)

Условие

Для любого натурального [latex]{n}[/latex] докажите неравенство
$$\left|\left\{\frac n1\right\}-\left\{\frac
n2\right\}+\left\{\frac n3\right\}-\ldots+(-1)^n\left\{\frac
nn\right\} \right|<\sqrt{2n}$$
([latex]\left \{ a \right \}[/latex] — дробная часть числа [latex]a[/latex]).

Неравенство верно для [latex]{n = 1}[/latex] или [latex]{2}[/latex], поэтому пусть [latex]{n \geqslant 3}[/latex]. Рассмотрим число [latex]{k = \left [ \sqrt{2n} \right ]+1}[/latex] и оценим по отдельности величины
$$
A=\left\{\frac{n}{1}\right\}-\left\{\frac{n}{2}\right\}+\left\{\frac{n}{3}\right\}-\ldots-(-1)^{k-1}\left\{\frac{n}{k-1}\right\} \\
$$
и
$$
B=\left\{\frac{n}{k}\right\}-\left\{\frac{n}{k+1}\right\}+\ldots+(-1)^{n-k}\left\{\frac{n}{n}\right\} \\
$$
Очевидно,
$$
A \leqslant\left\{\frac{n}{1}\right\}+\left\{\frac{n}{3}\right\}+\ldots,
$$
где всего [latex]\left [ \frac{k}{2} \right ][/latex] слагаемых, причём первое из них равно 0. Далее,
$$
A \geqslant-\left\{\frac{n}{2}\right\}-\left\{\frac{n}{4}\right\}-\ldots,
$$
где слагаемых [latex]\left [ \frac{k-1}{2} \right ][/latex] штук. Поскольку для любого натурального [latex]m < k[/latex] имеем
$$
\left\{\frac{n}{m}\right\} \leqslant \frac{m-1}{m} \leqslant \frac{k-2}{k-1},
$$
то
$$
|A| \leqslant\left[\frac{k-1}{2}\right] \cdot \frac{k-2}{k-1} \leqslant \frac{k-2}{2}
$$
Поскольку дробная часть — это разность самого числа и его целой части, то
$$
B = C-D,
$$
где
$$
C=\frac{n}{k}-\frac{n}{k+1}+\ldots+(-1)^{n-k} \frac{n}{n}
$$
и
$$
D=\left[\frac{n}{k}\right]-\left[\frac{n}{k+1}\right]+\ldots+(-1)^{n-k}\left[\frac{n}{n}\right].
$$
Поскольку
$$
0 \leqslant\left(\frac{n}{k}-\frac{n}{k+1}\right)+\left(\frac{n}{k+2}-\frac{n}{k+3}\right)+\ldots=C=
$$
$$
\frac{n}{k}-\left(\frac{n}{k+1}-\frac{n}{k+2}\right)-\dots \leqslant \frac{n}{k},
$$
то [latex]0\leqslant C \leqslant\frac{n}{k}[/latex] Аналогично, [latex]0\leqslant D\leqslant\left [\frac{n}{k} \right ] \leqslant\frac{n}{k}.[/latex]

Следовательно,
$$
|B| = |C-D|\leqslant\frac{n}{k}
$$
и, наконец,
$$
\left|\left\{\frac{n}{1}\right\}-\left\{\frac{n}{2}\right\}+\left\{\frac{n}{3}\right\}-\ldots-(-1)^{n}\left\{\frac{n}{n}\right\}\right|=\left|A-(-1)^{k} B\right| \leqslant
$$
$$
\leqslant \frac{k-2}{2}+\frac{n}{k} \leqslant \frac{\sqrt{2 n}-1}{2}+\sqrt{\frac{n}{2}}<\sqrt{2 n}.
$$

В.Барзов

М1336. Доказательство неравенства

Задача из журнала «Квант» (1992 год, 10 выпуск)

Условие

Докажите для любых чисел $m$ и $n$, больших 1, неравенство $$\frac{1}{\sqrt[n]{m+1}}+\frac{1}{\sqrt[m]{n+1}}>1 \tag{*}$$

Доказательство

Докажем, что неравенство $$(1+x)^{a}<1+\alpha x$$ выполняется при $0 < \alpha < 1 $ и $x>0$. Пусть $$f(x)=(1+x)^{\alpha}-\alpha x-1$$ Имеем $$f(0) = 0$$ $$f^{\prime}(x)=\alpha(1+x)^{\alpha-1}-\alpha<0$$ при $x>0$. Следовательно, при $x \geqslant 0$ функция $f(x)$ убывает, поэтому $f(x)<f(0)=0$ при $x>0$.

Пользуясь неравенством $(*)$, получаем, что $$(1+m)^{\frac{1}{n}}<1+\frac{m}{n},(1+n)^{\frac{1}{m}}<1+\frac{n}{m}$$ откуда сразу следует, что $$\frac{1}{\sqrt[n]{1+m}}+\frac{1}{\sqrt[m]{1+n}}>\frac{n}{m+n}+\frac{m}{m+n}=1$$

И. Сендеров

M2260. Наибольшее значение суммы

Задача из журнала «Квант» (2012 год, 4 выпуск)

Условие

Сто неотрицательных чисел $x_{1},x_{2},\ldots,x_{100}$ расставлены по кругу так, что сумма любых трех подряд идущих чисел не превосходит $1$ (т. е. $x_{1}+x_{2}+x_{3}\leqslant 1,x_{2}+x_{3}+x_{4}\leqslant 1,\ldots,x_{100}+x_{1}+x_{2}\leqslant 1$). Найдите наибольшее значение суммы $$S=x_{1}x_{3}+x_{2}x_{4}+x_{3}x_{5}+x_{4}x_{6}+\ldots+x_{99}x_{1}+x_{100}x_{2}.$$

Ответ:$\frac{25}{2}.$

Решение

Положим $x_{2i}=0$, $x_{2i-1}=\frac{1}{2}$ для всех $i=1,\ldots,50.$ Тогда $S=50\cdot\left(\frac{1}{2}\right )^{2}=\frac{25}{2}$. Итак, остается доказать, что $S\leqslant\frac{25}{2}$ для всех значений $x_{i},$ удовлетворяющих условию.

При любом $i$ от $1$ до $50$ имеем $x_{2i-1}\leqslant 1-x_{2i}-x_{2i+1}$,$x_{2i+2}\leqslant 1-x_{2i}-x_{2i+1}.$ По неравенству о средних,
\begin{multline*}
x_{2i-1}x_{2i+1}+x_{2i}x_{2i+2}\leqslant \\ \leqslant\left(1-x_{2i}-x_{2i+1}\right)x_{2i+1}+x_{2i}\left(1-x_{2i}-x_{2i+1}\right )=\\ =\left ( x_{2i}+x_{2i+1} \right )\left(1-x_{2i}-x_{2i+1}\right)\leqslant \\ \leqslant\left ( \frac{\left ( x_{2i}+x_{2i+1} \right )+\left( 1-x_{2i}-x_{2i+1} \right)}{2}\right )^{2}=\frac{1}{4}.\end{multline*}
Складывая получившиеся неравенства для $i=1,2,\ldots,50$, приходим к нужному неравенству $$\sum\limits_{i=1}^{50}\left(x_{2i-1}x_{2i+1}+x_{2i}x_{2i+2}\right)\leqslant 50\cdot\frac{1}{4}=\frac{25}{2}.$$

Замечание. Предложенное решение показывает, что верен следующий несколько более общий факт. Пусть $2n$ неотрицательных чисел $x_{1},\ldots,x_{2n}$ записаны в ряд, и пусть $x_{i}+x_{i+1}+x_{i+2}\leqslant 1$ для всех $i=1,2,\ldots,2n-2.$ Тогда $$\sum\limits_{i=1}^{2n-2}x_{i}x_{i+2}\leqslant\frac{n-1}{4}.$$Исходное неравенство получается как частный случай для ряда из чисел $x_{1}, x_{2},\ldots,x_{100},x_{1},x_{2}.$

И. Богданов