8.5 Площадь поверхности тела вращения

Пусть на отрезке $\left[a,b\right]$ задана неотрицательная непрерывно дифференцируемая функция $f$. Будем вращать ее график вокруг оси $Ox$. В результате получим некоторую поверхность. Выведем формулу для вычисления ее площади.

Рассмотрим разбиение отрезка $\left[a,b\right]$ точками $a = x_{0} < x_{1} < . . . < x_{n}$. Вращая криволинейную трапецию, ограниченную графиком функции $y = f(x), x_{i} \leqslant x \leqslant x_{i+1}$, получим усеченный «конус» с образующей $y = f(x)$ и радиусами оснований $f(x_{i})$ и $f(x_{i+1})$. Соединим точки $\left(x_{i},f\left(x_{i}\right)\right)$ и $\left(x_{i+1},f\left(x_{i+1}\right)\right)$ отрезком. В результате вращения получим усеченный конус с теми же радиусами оснований и этим отрезком в качестве образующей. Площадь боковой поверхности этого конуса равна
$$2\pi\frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}l_{i},$$
где $l_{i}=\sqrt{\left(\Delta x_{i}\right)^{2}+\left(f\left(x_{i+1}\right)-f\left(x_{i}\right)\right)^{2}}$ — длина образующей. Складывая, получаем
$$\sigma\equiv2\pi\sum\limits_{i=0}^{n-1}{\frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}l_{i}}.$$

При стремлении к нулю диаметра разбиения сумма σ стремится к определенному пределу, который естественно считать площадью поверхности вращения. С другой стороны, если в выражении для $l_{i}$ применить формулу Лагранжа, то получим
$$\sigma=2\pi\sum\limits_{i=0}^{n-1}{\frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}\sqrt{1+\left[f^{\prime}\left(\xi_{i}\right)\right]^{2}}\Delta x_{i}},$$
где $\xi_{i}\epsilon\left[x_{i},x_{i+1}\right]$. Заменим в правой части $x_{i}$ и $x_{i+1}$ на $\xi_{i}$ и оценим погрешность. Имеем
$$\mid\sigma-2\pi\sum\limits_{i=0}^{n-1}{f\left(\xi_{i}\right)}\sqrt{1+\left[f^{\prime}\left(\xi_{i}\right)\right]^{2}}\Delta x_{i}\mid\leqslant2\pi\sum\limits_{i=0}^{n-1}\omega_{i}\sqrt{1+M^{2}}\Delta x_{i}$$
где $ω_{i}$ – колебание функции $f$ на $\left[x_{i},x_{i+1}\right]$, а $M$ – верхняя грань функции $\mid f^{\prime}\mid$ на $\left[a,b\right]$. Из условий на функцию $f$ следует, что правая часть стремится к нулю вместе с диаметром разбиения. Поэтому сумма $\sigma$ стремится к $2\pi\int\limits_{a}^{b} f\left(x\right)\sqrt{1+\left[f^{\prime}\left(x\right)\right]^{2}}{\text{d}x}$.

Итак, получили следующую формулу для нахождения площади поверхности вращения:
$$S=2\pi\int\limits_{a}^{b} f\left(x\right)\sqrt{1+\left[f^{\prime}\left(x\right)\right]^{2}}{\text{d}x}.$$

Примеры решения задач

  1. Найти площадь поверхности, образованной вращением вокруг оси $Ox$ дуги кубической параболы $y=x^{3}$, заключенной между прямыми $x=0$ и $x=1$.
    Решение

    $P=2\pi\int\limits_{a}^{b} f\left(x\right)\sqrt{1+\left(f^{\prime}\left(x\right)\right)^{2}}dx=2\pi\int\limits_{0}^{1}x^{3}\sqrt{1+\left(3x^{2}\right)^{2}}dx=$
    $=2\pi\int\limits_{0}^{1}x^{3}\sqrt{1+9x^{4}}dx=\begin{bmatrix}t=1+9x^{4} \\dt=36x^{3}dx \end{bmatrix}=$
    $=2\pi\int\limits_{1}^{10} \sqrt{t}\frac{\text{d}t}{36}=\frac{\pi}{18}\int\limits_{1}^{10} \sqrt{t}{\text{d}t}=\frac{\pi}{18}\cdot\frac{2}{3}t^{\frac{3}{2}}\mid^{10}_{1}=\frac{\pi}{27}\left(10\sqrt{10}-1\right)$

  2. Вычислить площадь поверхности, которая образована вращением кривой $y^{2}=4+x$, которая отсекается прямой $x=2$ вокруг оси $Ox$.
    Решение

    $P=2\pi\int\limits_{a}^{b} \psi\left(t\right)\sqrt{\left(\varphi^{\prime}\left(t\right)\right)^{2}+\left(\psi^{\prime}\left(t\right)\right)^{2}}=2\pi\int\limits_{-4}^{2} y\sqrt{1+\left(y^{\prime}\right)^2}\text{d}x=$
    $=2\pi\int\limits_{-4}^{2} \sqrt{\left(4+x\right)\left(1+\frac{1}{4(4+x)}\right)}\text{d}x=\pi\int\limits_{-4}^{2} \sqrt{17+4x}{\text{d}x}=$
    $=\frac{\pi}{6}\left(125-1\right)=\frac{62}{3}\pi$

  3. Вычислить площадь поверхности тела вращения, заданными такими уравнениями: $x\left(t\right)=3\cos t$, $y\left(t\right)=3\sin t$.
    Решение

    $P=2\pi\int\limits_{a}^{b} y\left(t\right)\sqrt{\left(x^{\prime}\left(t\right)\right)^{2}+\left(y^{\prime}\left(t\right)\right)^{2}}\text{d}x=2\pi\int\limits_{0}^{\pi} 3\sin t\cdot3\text{d} t=$
    $=\frac{\pi}{6}\left(17+4x\right)^{\frac{3}{2}}\mid^{2}_{-4}=-18\pi \left(\cos t\right)\mid^{\pi}_{0}=-18\pi\cdot\left(\cos \pi-\cos 0\right)\mid^{\pi}_{0}=$
    $=-18\pi\left(-1-1\right)=36\pi$

Площадь поверхности тела вращения

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

  1. Лысенко З.М. Конспект лекций по математическому анализу
  2. В.И.Коляда, А.А.Кореновский. Курс лекций по математическому анализу т.1. Одесса, «Астропринт», 2010, стр 253-254
  3. Б.П.Демидович. Сборник задач и упражнений по математическому анализу, 13-ое издание, Московского университета, 1997, стр. 419-421

8.1 Вычисление площадей

Будем называть декартовой плоскостью $\mathbb{R}^2$ множество всех упорядоченных пар действительных чисел $(x,y)$. Элементы $\mathbb{R}^2$ называют точками, а числа $x,y$ – координатами этих точек.

Пусть $a\leqslant b,c\leqslant d$. Множество всех точек, координаты $(x,y)$ которых удовлеворяют неравенствам $a\leqslant x\leqslant b,c\leqslant y\leqslant d$, будем называть прямоугольником и обозначать $[a,b;c,d]$. Стороны прямоугольника параллельны координатным осям. Если $a=b$ или $c=d$, то прямоугольник $[a,b;c,d]$ называется вырожденным.

Множество всех точек $(x,y)$ , удовлетворяющих неравенствам $a< x< b, c< y< d$, называют внутренностью прямоугольника.

Площадью (или мерой) прямоугольника $I\equiv [a,b;c,d]$ называется произведение длин его сторон, т.е. $m(I)=(d−c)(b−a)$.

Фигурой (или элементарным множеством) назовем такое множество на плоскости, которое можно представить в виде объединения конечного числа прямоугольников. Фигура называется вырожденной, если она может быть представлена в виде конечного объединения вырожденных прямоугольников.

Предложение. Каждую фигуру можно разбить на конечное число прямоугольников с попарно непересекающимися внутренностями.

Это предложение принимаем без доказательства.

Определение. Пусть фигура $X$ является объединением прямоугольников $I_{1},\dots ,I_{n}$, у которых внутренности попарно не пересекаются. Тогда мерой фигуры $X$ называется
$$m(X) = \sum_{k=1}^{n}m(I_{k}).$$

Нетрудно показать, что данное определение меры не зависит от способа разбиения этой фигуры на прямоугольники с попарно непересекающимися внутренностями. Ясно, что мера вырожденной фигуры равна нулю.

Пусть теперь $E$ – произвольное множество на плоскости, которое содержится в некотором прямоугольнике, т.е. ограниченное.Число $$m^*(E) = \inf_{X\supset E}m(X),$$ где нижняя грань берется по всевозможным фигурам $X$, содержащим множество $E$, называется внешней мерой Жордана множества $E$. Далее, число $$m_{*}(E) = \sup_{X\subset E}m(X),$$ где верхняя грань берется по всевозможным фигурам $X$, содержащимся во множестве $E$, называется внутренней мерой Жордана множества $E$.

Нетрудно показать, что если фигуры $X$ и $Y$ таковы, что $X\subset Y$, то $m(X) \leqslant m(Y)$. Отсюда сразу следует, что для любого ограниченного множества $E$ справедливо неравенство $m_{∗}(E)\leqslant m^*(E).$

Определение. Если внутренняя мера множества $E$ равна его внешней мере, то множество $E$ называется измеримым по Жордану или квадрируемым. В этом случае общее значение внешней и внутренней мер называется мерой Жордана множества $E$ и обозначается $m(E).$

Пусть $E$ – множество всех точек из единичного квадрата $[0,1;0,1]$, у которых обе координаты рациональны. Это множество не содержит ни одной невырожденной фигуры, т.к. в каждом невырожденном прямоугольнике существуют точки с иррациональными координатами. Значит, $m_{∗}(E)=0.$ С другой стороны, нетрудно показать, что любая фигура, содержащая множество $E$, содержит также единичный квадрат. Поэтому $m^∗(E)=1.$ Таким образом, $m_{∗}(E)< m^∗(E)$, так что множество $E$ неизмеримо по Жордану.

Определение. Пусть $f$ – неотрицательная функция на отрезке $[a,b].$ Подграфиком функции $f$ будем называть множество $E_{f}$ всех точек $(x,y)$, координаты которых удовлетворяют неравенствам $a\leqslant x\leqslant b,0\leqslant y\leqslant f(x).$

Теорема. Пусть функция $f$ неотрицательна и интегрируема на отрезке $[a,b].$ Тогда ее подграфик $E_{f}$ измерим и $$m(E_{f}) = \int \limits_{a}^{b} f(x)dx.$$

Возьмем разбиение $a = x_{0} < x_{1} < \dots < x_{n} = b$ отрезка $[a,b]$ и обозначим $$m_{i} = \inf_{x\in [x_{i},x_{i+1}]}f(x),\;\;\;\;\;\;\; M_{i} = \sup_{x\in [x_{i},x_{i+1}]}f(x).$$ Далее пусть $$\underline \Delta_{i} = [x_{i},x_{i+1};0,m_{i}],$$ $$\overline{\Delta_{i}} = [x_{i},x_{i+1};0,M_{i}],$$ $$\underline X=\bigcup_{i=0}^{n-1}\underline \Delta_{i},$$ $$\overline{X}=\bigcup_{i=0}^{n-1}\overline{\Delta_{i}}.$$
Тогда, по определению меры фигуры, имеем $$m(\underline X)=\sum_{i=0}^{n-1}m(\underline\Delta_{i})=\sum_{i=0}^{n-1}m_{i}\Delta x_{i}=\underline S ,$$
где $\underline S$ – нижняя сумма Дарбу функции $f$, соответствующая выбранному разбиению. Аналогично получаем, что $m(\overline X)=\overline S,$ где $\overline S$ – верхняя сумма Дарбу.
Поскольку функция $f$ интегрируема, то $\overline S — \underline S\rightarrow 0$ вместе с диаметром разбиения. Следовательно, для любого $\varepsilon >0$ найдется такое $\delta >0$, что для любого разбиения диаметра, меньшего, чем $\delta$, справедливо неравенство $\overline S — \underline S < \varepsilon$. Значит, $m(\overline X)−m(\underline X) < \varepsilon$. Заметим, что $\underline X\subset E_{f} \subset \overline X$. Поэтому $m(\underline X) \leqslant m_{*}(E_{f}) \leqslant m^*(E_{f}) \leqslant m(\overline X)$. Отсюда следует $m^*(E_{f})-m_{*}(E_{f}) <\varepsilon$, а значит, $m_{∗}(E_{f})$ и $m^∗(E_{f})$ равны. Это означает, что множество $E_{f}$ измеримо. Кроме того, из неравенств $\underline S \leqslant m(E_{f})\leqslant \overline S$ и из того, что $\displaystyle \overline S - \underline S\rightarrow 0$ и $\displaystyle \overline S \rightarrow \int\limits_{a}^{b} f(x)dx,$ $\displaystyle \underline S \rightarrow \int\limits_{a}^{b} f(x)dx$, вытекает, что $\displaystyle m(E_{f})=\int\limits_{a}^{b} f(x)dx$.

Примеры решения задач

Данные примеры читателю рекомендуется решить самому в качестве тренировки.

  1. Вычислить площадь фигуры, ограниченной линиями $y=x^2+2,$ $y=0,$ $x=-2,$ $x=1$.
    Решение

    На отрезке $[-2;1]$ график функции $y=x^2+2$ расположен над осью $Ox$, поэтому:
    $$S=\int\limits_{-2}^{1}(x^2+2)dx=\left ( \frac{x^3}{3}+2x \right )\bigg|_{-2}^1=$$
    $$=\frac{1}{3}+2-\left ( -\frac{8}{3}-4 \right ) = \frac{1}{3} +2+\frac{8}{3}+4=9$$

    Ответ: $S=9.$

  2. Вычислить площадь фигуры, ограниченной линиями $\displaystyle y=\frac{2}{x},$ $y=x+1,$ $y=0,$ $x=3.$
    Решение

    Фигура, площадь которой нам нужно найти, зарисована серым цветом.

    Этот пример полезен тем, что в нём площадь фигуры считается с помощью двух определенных интегралов:

    • На отрезке $[-1;1]$ над осью $Ox$ расположен график прямой $y=x+1$;
    • На отрезке $[1;3]$ над осью $Ox$ расположен график гиперболы $\displaystyle y=\frac{2}{x}$.

    Понятно, что площади нужно сложить, поэтому:
    $$S=\int\limits_{-1}^{1}(x+1)dx+\int\limits_{1}^{3}\frac{2dx}{x}=$$
    $$=\left ( \frac{x^2}{2} +x\right )\bigg|_{-1}^1 +2(\ln x)\bigg|_{1}^3=$$
    $$=\frac{1}{2}+1-\left ( \frac{1}{2}-1 \right ) +2(\ln3- \ln 1)=$$
    $$=\frac{1}{2}+1-\frac{1}{2}+1+2(\ln3-0)=2+2\ln3=2(1+\ln3)$$

    Ответ: $S=2(1+\ln3).$

  3. Найти площадь множества, ограниченного линиями $y=x^2+1,$ $x+y=3.$
    Решение

    Найдем абсциссы точек пересечения графиков
    $$\left\{\begin{matrix}
    y=x^2+1\\
    y=3-x
    \end{matrix}\right.$$

    Решая эту систему, находим $x_{1}=-2,$ $x_{2}=1.$ Поэтому
    $$S=\int\limits_{-2}^{1}(3-x)dx-\int\limits_{-2}^{1}(x^2+1)dx=$$
    $$=9-\frac{x^2}{2}\bigg|_{-2}^1-\left ( \frac{x^3}{3}+x \right )\bigg|_{-2}^1=$$
    $$=9-\frac{1}{2}+2-\frac{4}{3}-\frac{8}{3}-2=4.5$$

    Ответ: $S=4.5.$

  4. Найти площадь круга $x^2+y^2 \leqslant R^2$.
    Решение

    Верхняя полуокружность задается уравнением $y=\sqrt{R^2-x^2},$ $-R \leqslant x \leqslant R.$ Поэтому площадь верхнего полукруга равна
    $$S=\int\limits_{-R}^{R}\sqrt{R^2-x^2}dx=2\int\limits_{0}^{R}\sqrt{R^2-x^2}dx=$$
    $$=[x=Rz]=2R^2\int\limits_{0}^{1}\sqrt{1-z^2}dz=\frac{\pi R^2}{2},$$
    а значит, площадь всего круга равна $\pi R^2.$

    Ответ: $S=\pi R^2.$

Вычисление площадей

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Вычисление площадей».

См. также:

Задачи, которые приводят к понятию определенного интеграла Римана


Задача 1. (О вычислении пути)


Условие. Предположим, что $latex f(x)$ — скорость движения материальной точки по оси $latex OY$ и $latex f(x)>0$. Необходимо вычислить путь, пройденный материальной точкой за промежуток времени от $latex x=a$ до $latex x=b$.

Решение. Разобьём рассматриваемый промежуток времени от $latex a$ до $latex b$ на малые промежутки  (рис.3)  $$a=x_{0}<x_{1}<x_{2}<…<x_{n-1}<x_{n}=b$$ На указанном промежутке скорость приближенно можно считать равной и постоянной, например, $latex f(x_{k})$. Получаем, что путь, пройденный материальной точкой за время $latex \triangle x_{k}=x_{k}-x_{k-1}$ приближенно равен $latex f(x_{k})\triangle x_{k}$. Следовательно, путь пройденный от $latex a$ до $latex b$ приближенно равен:

$latex {S\approx f(x_{1})\triangle x_{1}+f(x_{2})\triangle x_{2}+…+f(x_{n})\triangle x_{n}}$.                                                (1)

При уменьшении всех промежутков времени мы будем получать более точное значение пути. И так, чтобы получить точное значение пути, перейдём к пределу в формуле (1) :

$latex {S\approx \lim\limits_{\triangle x_{k}\to 0 }f(x_{1})\triangle x_{1}+f(x_{2})\triangle x_{2}+…+f(x_{n})\triangle x_{n}}$.                                       (2)


Задача 2. (О вычислении площади криволинейной трапеции)


В предыдущей задаче мы вычислили путь, пройденный материальной точкой за промежуток времени от $latex x=a$ до $latex x=b$, перейдя к пределу. В математике предел вида (2) называется определённым интегралом(или интегралом Римана) от функции $latex f(x)$  в пределах от $latex a$ до $latex b$ и обозначается: $$\underset{a}{\overset{b}{\int}}f(x)dx$$

Рассмотрим рис.1 рисунок-1   Сумма вида (1) равна сумме  площадей прямоугольников с основаниями $latex \triangle x_{k}$  и высотами $latex f( x_{k})$. Т.е., данная сумма равна площади изображенной на рис.1 ступенчатой фигуры, обозначенной светло- и тёмно-зеленым цветом. При стремлении к нулю длин всех отрезков $latex \triangle x_{k}$ площадь указанной ступенчатой фигуры будет стремиться к площади отмеченной на рисунке ступенчатой фигуры, лежащей под графиком функции $latex y=f(x)$ на отрезке $latex [a;b]$.

Эту криволинейную фигуру часто называют криволинейной трапецией . Аналогично задачи 1, перейдём к пределу:

$latex {S=\lim\limits_{\lambda \to 0 }f(x_{1})\triangle x_{1}+f(x_{2})\triangle x_{2}+…+f(x_{n})\triangle x_{n}}$ , где  $latex \lambda = \max \triangle x_{k}$

и $latex S$ -площадь, отмеченной на рисунке (1) фигуры (криволинейной трапеции).

Вывод: площадь криволинейной трапеции можно вычислить по формуле:

[latex] S=\lim\limits_{\lambda \to 0 } \sum\limits_{n=1}^{k}f(x_{n})\triangle x_{n}[/latex] [latex]=\int_{a}^{b}f(x)dx[/latex]                                                                 (3)

Рассмотрим пример:

Условие. Вычислить площадь $latex S$, заключенную между графиком функции $latex y=\sin x$ на отрезке от $latex 0$ до $latex \pi$ и осью $latex OX$ (рис. 2)

рисунок-3

Решение. По формуле (3) предыдущей задачи получаем: $${S=\underset{0}{\overset{\pi}{\int}}\sin x\ dx}$$

Так как одной из первообразных функции $latex f(x)=\sin x$ является функция $latex \Phi (x)=-\cos x$, то по формуле Ньютона -Лейбница получим: $$ S={{\underset{0}{\overset{\pi}{\int}}\sin x\ dx}=(-\cos \pi)-(-\cos 0) }=2$$


Задача 3. (О вычислении массы линейного стержня по известной плотности)


Пусть задан прямолинейный стержень, который меняется вдоль оси (рис.3). default2
$latex \rho =\rho\ (x)$
Если бы плотность во всех участках стержня была бы одинаковой (однородный стержень), то масса m стержня :
$latex m=\rho (b-a)$, $latex \rho =const$
Но, так как плотность не является постоянной, то разобьем [a,b] на однородные участки (участки с одинаковой плотностью) :
$latex a=x_{o}<x_{1}<x_{2}<…<x_{n-1}<x_{n}=b$
$latex \forall \ \xi _{i}\in \triangle x_{i}$ , где $latex \triangle x_{i}=x_{i}-x_{i-1} $ $latex i=\overline{1,n}$
Масса каждого отрезка : $latex m\approx \rho (\xi _{i})\cdot \triangle x_{i}$ $latex
\Rightarrow$ масса всего стержня равна пределу суммы $latex {m=\lim\limits_{x \to 0}\sum\limits_{i=1}^{n}\rho (\xi _{i})\triangle x_{i}}$

Замечание

В просмотренной задаче речь идёт о рассмотрении пределов сумм вида $latex {\sum\limits_{i=1}^{n}\rho (\xi _{i})\triangle x_{i}}$, которые называются интегральными суммами


 

Список литературы:

  • А.Г. Попов, П.Е. Данко, Т.Я. Кожевникова «Мир и образование» 2005 г. (Издание 6-е. Часть 1)  стр. 243-258
  • Лысенко З.М. Конспект лекций по курсу математического анализа.

Тест (Задачи, которые приводят к понятию определенного интеграла Римана)

  1. Задача о вычислении площади криволинейной трапеции.
  2. Задача о вычислении массы линейного стержня по известной плотности.
  3. Задача о вычислении пути, пройденного материальной точкой.

Таблица лучших: Тест (Задачи, которые приводят к понятию определенного интеграла Римана)

максимум из 8 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных