4.5 Непрерывность и разрывы монотонной функции

Определение. Функция $f$, определенная на интервале $\left(a, b\right)$, называется непрерывной на этом интервале, если она непрерывна в каждой точке этого интервала. Функция $f$ называется непрерывной на отрезке $\left[a, b\right]$, если она непрерывна на $\left(a, b\right)$, а в точках $a$ и $b$ непрерывна справа и слева, соответственно.

В этом параграфе мы исследуем характер возможных разрывов у монотонной функции. Именно следующая теорема показывает, что у монотонной функции не может быть разрывов $II$ рода, а во внутренних точках
не может быть устранимых разрывов. Напротив, в концевых точках если и есть разрыв, то он устранимый.

Теорема $1$. Пусть функция $f$ монотонна на $\left[a, b\right]$. Тогда

  1. Если $x_0\in\left(a, b\right)$, то имеет место одна и только одна из следующих двух ситуаций:
    1. $f$ непрерывна в точке $x_0$;
    2. в точке $x_0$ функция $f$ имеет неустранимый разрыв $I$ рода.
  2. Если $x_0=a \left(x_0=b\right)$, то
    1. либо $f$ непрерывна справа (слева) в точке $x_0$;
    2. либо $f$ имеет в точке $x_0$ устранимый разрыв.

Рассмотрим случай, когда $f$ возрастает на $\left[a, b\right]$. Пусть $x_0\in\left(a, b\right)$. Тогда из неравенства $f\left(x\right)\leqslant f\left(x_0\right)\left(x<x_0\right)$ и монотонности $f$ следует, что существует $f\left(x_0-0\right)\leqslant f\left(x_0\right)$. Аналогично, из неравенства $f\left(x\right)\geqslant f\left(x_0\right)\left(x>x_0\right)$ и монотонности $f$ следует, что существует $f\left(x_0+0\right)\geqslant f\left(x_0\right)$. Итак,
$$f\left(x_0-0\right)\leqslant f\left(x_0\right)\leqslant f\left(x_0+0\right)\ \ \ \ \ \ \ \ \ \ \left(4.4\right)$$
Если в $\left(4.4\right)$ два знака неравенства, то $f$ непрерывна в точке $x_0$. Если же хотя бы одно из неравенств строгое, то в точке $x_0$ функция $f$ имеет скачок. Из $\left(4.4\right)$ также следует, что в точке $x_0$ устранимый разрыв невозможен.
Пусть теперь $x_0=b$. Тогда $f\left(x\right)\leqslant f\left(b\right)$ и существует $f\left(b-0\right)\leqslant f\left(b\right)$. Если $f\left(b-0\right)=f\left(b\right)$, то $f$ непрерывна слева в точке $b$. Если же $f\left(b-0\right)<f\left(b\right)$, то в точке $b$ у функции $f$ устранимый разрыв (левосторонний). Случай $x_0=a$ рассматривается аналогично.

Теперь изучим вопрос о количестве точек разрыва монотонной функции, заданной на $\left[a, b\right]$. Может оказаться, что точек разрыва у функции $f$ нет $(например, f\left(x\right)=x)$. Легко построить пример монотонной функции, у которой любой наперед заданный конечный набор точек из $\left[a, b\right]$ будет точками разрыва, а все остальные точки будут точками непрерывности. Монотонная функция может иметь и бесконечно много точек разрыва. Например, у невозрастающей функции $$ \displaystyle f\left(x\right)=\left\{\begin{matrix}1-\displaystyle\frac{1}{n}, \frac{1}{n+1}<x\leqslant \frac{1}{n}, n=1,2,…,\\ 1, x=0\end{matrix}\right.$$ каждая точка вида $\displaystyle\frac{1}{n}\left(n=1, 2,\ldots\right)$ является точкой разрыва. В этом примере множество точек разрыва счетное. Если же отказаться от условия монотонности, то можно привести пример функции, у которой множество точек разрыва несчетно (функция Дирихле). Естественно спросить, может ли монотонная функция иметь несчетное множество точек разрыва?

Определение. Множество называется не более чем счетным, если оно пусто, конечно или счетно.

Теорема $2$. Пусть функция $f$ монотонна на $\left(a, b\right)$. Тогда множество ее точек разрыва не более чем счетно.

Пусть функция $f$ не убывает на $\left(a, b\right)$. Согласно предыдущей теореме, если в некоторой точке $x_0\in\left(a, b\right)$ функция $f$ имеет разрыв, то это — скачок, т.е. $f\left(x_0-0\right)<f\left(x_0+0\right)$. Поэтому каждой точке разрыва $x$ можно поставить в соответствие интервал $I_x=\left(f\left(x_0-0\right), f\left(x_0+0\right)\right)$. Пусть $x’$ и $x^{\prime\prime}$ — две различные точки разрыва функции $f$. Покажем, что интервалы $I_{{x}^{\prime}}$ и $I_{{x}^{\prime\prime}}$ не пересекаются. Пусть $x'<x^{\prime\prime}$. Выберем точку $\xi$ такую что $x'<\xi<x^{\prime\prime}$. Тогда, в силу монотонности $f$, $f\left(x’+0\right)\leqslant f\left(\xi\right)$ и $f\left(x^{\prime\prime}-0\right)\geqslant f\left(\xi\right)$, т.е. $f\left(x’+0\right)\leqslant f\left(x^{\prime\prime}-0\right)$. Это означает, что интервалы $\left(f\left(x’-0\right), f\left(x’+0\right)\right)$ и $\left(f\left(x^{\prime\prime}-0\right), f\left(x^{\prime\prime}+0\right)\right)$ не имеют общих точек. Итак, каждой точке разрыва $x$ поставлен в соответствие интервал $I_x$. В каждом таком интервале $I_x$ выберем рациональное число $r_x$. При этом различным точкам разрыва $x’$ и $x^{\prime\prime}$ будут соответствовать различные числа $r_{{x}^{\prime}}$ и $r_{{x}^{\prime\prime}}$, т.к. интервалы $I_{{x}^{\prime}}$ и $I_{{x}^{\prime\prime}}$ не пересекаются.

Пусть $E\subset\left(a, b\right)$ — множество всех точек разрыва функции $f$. Если $E\neq\varnothing$, то каждому $x\in E$ поставлено в соответствие рациональное число $r_x$. Мы получили взаимно однозначное соответствие между элементами множества $E$ и некоторым подмножеством $E_1\subset \mathbb{Q}$ множества $\mathbb{Q}$. Но множество рациональных чисел $\mathbb{Q}$ счетно, поэтому и множество $E_1$ не более чем счетно, а значит не более чем счетно и само множество $E$.

Пусть функция $f$ монотонна на $\left[a, b\right]$. Тогда множество ее значений $E\left(f\right)$ содержится в отрезке $I$ с концами $f\left(a\right)$ и $f\left(b\right)$, т.е. $E\left(f\right)\subset I$. Следующая теорема показывает, что в случае $E\left(f\right)=I$ функция $f$ непрерывна на $\left[a, b\right]$. Другими словами, если в области значений монотонной функции нет пустот (промежутков), то такая функция непрерывна.

Теорема $3$. Пусть функция $f$ монотонна на $\left[a, b\right]$ и область ее значений представляет собой отрезок с концами $f\left(a\right)$ и $f\left(b\right)$. Тогда функция $f$ непрерывна на $\left[a, b\right]$.

Рассмотрим случай неубывающей $f$. Предположим, что $f$ разрывна в некоторой точке $x_0\in\left(a, b\right)$. Тогда, согласно теореме $1$, в точке $x_0$ функция $f$ имеет скачок, а из условия монотонности следует, что $f\left(x_0-0\right)<f\left(x_0+0\right)$. Итак, если $x<x_0$, то $f\left(x\right)\leqslant f\left(x_0-0\right)$, а при $x>x_0$ имеем $f\left(x\right)\geqslant f\left(x_0+0\right)$, т.е. на интервале $\left(f\left(x_0-0\right), f\left(x_0+0\right)\right)$ содержится разве что единственная точка $f\left(x_0\right)$ из области значения функции $E\left(f\right)$, что противоречит условию.

Случаи $x_0=a$ и $x_0=b$ исчерпываются аналогичным образом, и тем самым завершается доказательство теоремы.

Замечание. Теорема $3$ теряет силу, если отбросить условие монотонности функции $f$. Например, множество значений функции $$f\left(x\right)=\left\{\begin{matrix}-x, -1\leqslant x<0,\\x-1, 0\leqslant x\leqslant1, \end{matrix}\right.$$
определённой на отрезке $\left[-1, 1\right]$, представляет собой отрезок $\left[-1, 1\right]$, но в то же время эта функция разрывна в точке $x_0=0$.

Эквивалентная формулировка теоремы $3$ имеет следующий вид.

Если монотонная функция $f$ принимает все промежуточные значения между $f\left(a\right)$ и $f\left(b\right)$, то $f$ непрерывна на отрезке $\left[a, b\right]$.

Примеры решения задач

  1. Найти точки разрыва функции $$f \left(x \right)= \left \{ \begin{matrix}x^2, -1 \leqslant x<0 \\ 2x-1, 0 \leqslant x<1 \end{matrix}\right.$$
    Решение

    $f\left(+0\right)=\lim\limits_{x \to +0} f\left(x\right)=\lim\limits_{x \to +0}\left(2x-1\right)=-1$, $f\left(-0\right)=\lim\limits_{x \to -0} f\left(x\right)=\lim\limits_{x \to +0} x^2=0$. $f\left(+0\right)$ и $f\left(-0\right)$ — конечны, но не равны, поэтому точка $x=0$ — точка разрыва первого рода.

Смотрите также

Непрерывность и разрывы монотонной функции

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Непрерывность и разрывы монотонной функции».

Интегрируемость по Риману монотонных функций

Теорема. Если функция f монотонна на отрезке \left[ {a,b} \right], то она интегрируема на этом отрезке.

Доказательство. Пусть, например, f возрастает. Возьмём произвольное разбиение \Pi . Тогда {\omega _i} = f\left( {{x_{i + 1}}} \right) - f\left( {{x_i}} \right),
поскольку колебание функции является разностью между наибольшим и наименьшим значениями функции. Получим

[latex]\sum\limits_{i = 0}^{n — 1} {{\omega _i}\Delta {x_i} \le d\left( \Pi \right)} \sum {\left( {f\left( {{x_{i + 1}}} \right) — f\left( {{x_i}} \right)} \right) = d\left( \Pi \right)\left[ {f\left( b \right) — f\left( a \right)} \right]} [/latex]

.
Отсюда видно, что выполнены условия критерия интегрируемости в терминах колебаний и теорема доказана.\blacksquare

Замечание. Из вышеизложенной теоремы видно, что существуют разрывные интегрируемые функции. В частности, монотонная функция может иметь
разрывы в счётном множестве точек. Поэтому интегрируемая функция может иметь счётное множество точек разрыва.

Пример. Положим f\left( 0 \right) = 0,\;f\left( x \right) = \frac{1}{n}\left( {x \in \left( {\frac{1}{{n + 1}},\frac{1}{n}} \right],\;n = 1,2,...} \right). Ясно, что каждая точка вида \frac{1}{n} является точкой разрыва функции, так что множество точек разрыва функции f счётно.
С другой стороны, поскольку f возрастает на \left[ {0,1} \right], то, по вышеизложенной теореме, она интегрируема на \left[ {0,1} \right].

Интегрируемость на отрезке

В данном тесте будут проверены ваши знания свойств интегрируемости функций на отрезке. Удачи!


Таблица лучших: Интегрируемость на отрезке

максимум из 40 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Точки разрыва монотонной функции

Теорема (о разрывах монотонной функции)

Если функция $latex f$ определена на отрезке $latex \left[ a,b \right]$ и монотонна, то она может иметь внутри этого отрезка, точки разрыва 1-го рода, и число точек либо конечно, либо счётно.

Доказательство этой теоремы легко следует из теоремы о существовании предела монотонной функции.

Пусть для определёности $latex f(x)$ не убывает в промежутке $latex X$. Возьмём любую точку $latex a\in X$, не совпадающую с левым концом $latex X$ , и рассмотрим ту часть $latex X$ , которая лежит влево от $latex a$ . При $latex x\rightarrow a-0, f(x)$ не убывает и ограничена сверху, поскольку $latex f(x)\leq f(a)$ при $latex x< a$.

В силу теоремы о пределе монотонной функции заключаем, что существует конечный, а согласно свойству функции, имеющей конечный предел , получим, что$latex f(a-0)\leq f(a)$.

Если $latex f(a-0)= f(a)$, то $latex f(x)$ непрерывна в точке $latex a$ слева. Аналогично убеждаемся, что в каждой точке$latex a\in X$, несовпадающей с правым концом$latex X,f(x)$ либо непрерывна справа, либо имеет конечный предел$latex f(a+0)> f(a)$. Ход доказательства для невозрастающей на $latex X$  функции аналогичен.

Итак, во всякой внутренней точке $latex a$  промежутка $latex X$  монотонная функция либо имеет точку разрыва первого с конечным скачком $latex f(a+0)- f(a-0)$, либо непрерывна.

Рекомендации:

 Учебники :

  • Кудрявцев Л.Д. «Математический анализ» Том 1, Глава 1, § 5, Тема 5.1 «Точки непрерывности и точки разрыва функции» стр.84-87 ;
  • Фильтенгольц Г.М. «Курс дифференциального и интегрального исчисления» Том1, Глава 2, § 4 «Непрерывность и разрыв функций»  стр.146-167 ;
  • Ильин В.А.,Позняк Э.Г. «Основы математического анализа» Часть 1, Глава 4, § 8 «Классификация точек разрыва функции»  стр.143-145.

Сборники задач:

  • Демидович Б.П. «Сборник упражнений по математическому анализу» 13-е издание, исправленное, Отдел 1,§ 7 «Непрерывность функции» стр.77-87;
  • Дороговцев А.Я. «Математический анализ»   Глава 3, § 2 «Непрерывные функции»  стр.50-58 .

"Разрывность функции"

Тест расчитан на людей которые внимательно изучили разделы: «Точки разрыва монотонной функции» и «Классификация точек разрыва», и следовали всем рекомендациям

Таблица лучших: "Разрывность функции"

максимум из 32 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

(Основной материал был взят из курса Математического анализа ,1 курс,1 семестр (доц. Лысенко З.М.))

Пределы монотонных функций

Перед тем как рассматривать теорему, давайте вспомним, что такое монотонная функция и нарисуем  её график.

Функция [latex]f(x)[/latex] называется монотонно возрастающей на отрезке [latex][a;b][/latex], если [latex]\forall x_{1}, x_{2}\in[a;b],x_{1}>[/latex] [latex]x_{2}\Rightarrow f(x_{1})\geq f(x_{2})[/latex]

Функция [latex]f(x)[/latex] называется монотонно убывающей на отрезке [latex][a;b][/latex], если [latex]\forall x_{1}, x_{2}\in [a;b] ,x_{1}>[/latex] [latex] x_{2}\Rightarrow f(x_{1})\leq f(x_{2})[/latex]

Функция [latex]f(x)[/latex] называется строго монотонно убывающей на отрезке [latex][a;b][/latex], если [latex]\forall x_{1}, x_{2}\in [a;b],x_{1}>[/latex][latex]x_{2}\Rightarrow f(x_{1})<f(x_{2})[/latex]

Функция [latex]f(x)[/latex] называется строго монотонно возрастающей на отрезке [latex][a;b][/latex], если [latex]\forall x_{1},x_{2}\in[a;b], x_{1}>[/latex][latex]x_{2}\Rightarrow f(x_{1})>f(x_{2})[/latex]

Пример графика монотонно возрастающей функции.

grafik1

 

На графике видно, что [latex]\forall x_{1}, x_{2} : x_{1}>x_{2}[/latex], соответствующие значения функции [latex]f(x_{1})\geq f(x_{2})[/latex]

Пример графика монотонно убывающей функции.

grafik2

На графике видно, что [latex]\forall x_{1},x_{2} : x_{1}>x_{2}[/latex], соответствующие значения функции [latex]f(x_{1})\leq f(x_{2})[/latex]

Теорема о существовании односторонних пределов у монотонных функций

Формулировка:

Если функция [latex]f(x)[/latex] определена и монотонна на отрезке [latex][a;b][/latex], то в каждой точке [latex]x_{0}\in (a;b)[/latex] эта функция имеет конечные пределы слева и справа, а в точках [latex]a[/latex] и [latex]b[/latex] правосторонний и левосторонний пределы.

Доказательство:

Пусть, например, функция [latex]f(x)[/latex] монотонно возрастает на [latex][a;b][/latex]. Выберем произвольную внутреннюю точку [latex]x_{0}\in (a;b][/latex]. Тогда [latex]\forall x\in [a;x_{0})\Rightarrow [/latex][latex]f(x)\leq f(x_{0})\Rightarrow[/latex] [latex]f(x)[/latex] ограничена сверху на [latex][a;x_{0})\Rightarrow[/latex][latex]\exists\sup f(x)=M\leqslant f(x_{0})[/latex].
Согласно определению:
а) [latex]\forall x\in [a;x_{0})\Rightarrow[/latex][latex] f(x) \leqslant M[/latex]
б) [latex]\forall \varepsilon > 0\exists x_{\varepsilon }:[/latex][latex]M-\varepsilon < f(x_{\varepsilon }),[/latex] обозначим [latex]\delta =x_{0}-x_{\varepsilon }>0[/latex].
Если [latex]x\in (x_{\varepsilon };x_{0})=(x_{0-\delta };x_{0})[/latex], то [latex]f(x_{\varepsilon })\leq f(x)[/latex].
Итог: [latex]\forall \varepsilon >0\exists \delta>0:[/latex][latex]\forall x\in (x_{0}-\delta;x_{0}):[/latex][latex]M-\varepsilon <[/latex] [latex]f(x_{\varepsilon }) < f(x)\leq M<[/latex] [latex] M+\varepsilon \Leftrightarrow[/latex][latex] |f(x)-M|< \varepsilon[/latex]
[latex]\lim_{x\rightarrow x_{0-0} } f(x) = M[/latex]
Итак [latex]f(x_{0}-0)= \sup f(x)[/latex], [latex]a\leqslant x<x_{0} [/latex].
Аналогично доказываем, что функция имеет в точке [latex]x_{0}\in [a;b)[/latex] предел справа причем [latex]f(x_{0}+0)=\inf f(x)[/latex], [latex]x_{0}<x\leqslant b[/latex].
Следствие. Если функция [latex]f[/latex] определена и монотонна на интервале [latex](a;b)[/latex], [latex]\forall\ x_{0}\in (a;b)\exists \[/latex] предел справа и слева, причем если [latex]f[/latex] возрастает, то
[latex]f(x_{0}-0)=\lim\limits_{x\to x_{0}-0} f(x)[/latex] [latex] \leq\lim\limits_{x\to x_{0}+0} f(x)=[/latex][latex]f(x_{0}+0)[/latex],
если убывает, то
[latex]f(x_{0}-0)=\lim\limits_{x\to x_{0}-0} f(x)[/latex] [latex] \geq\lim\limits_{x\to x_{0}+0} f(x)=[/latex][latex]f(x_{0}+0)[/latex].

Литература

Тест

Тест по теме Пределы монотонных функций.

Желаем удачи!

Таблица лучших: Предел монотонной функции

максимум из 10 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных