5.3 Производная сложной и обратной функций

Теорема (о производной композиции). Пусть функция $f$ определена на интервале $I$ и дифференцируема в точке $x_0 ∈ I$, а функция $g$ определена на интервале $J ⊃ f(I)$ и дифференцируема в соответствующей точке $y_0 = f (x_0) ∈ J$. Тогда сложная функция $\varphi(x) = g(f(x))$ дифференцируема в точке $x_0$, причем $$\varphi'(x_0) = g'(f(x_0)) \cdot f'(x_0)$$

Так как функция $g$ дифференцируема в точке $y_0$,
то $$g(y)-g(y_0) = g'(y_0)\cdot (y-y_0)+r(y)\cdot (y-y_0),\quad\quad(5.1)$$ где $\displaystyle \lim_{y\to y_0}\, r(y)=0$. Доопределим функцию $r$ в точке $y_0$ по непрерывности, положив $r (y_0) = 0$. В равенстве (5.1) считаем, что $y = f(x)$. Тогда получим $$\varphi(x)-\varphi(x_0) = g'(y_0)(f(x)-f(x_0)) + r(f(x))(f(x)-f(x_0)).$$ Разделив это равенство на $x−x_0$ и устремив $x \to x_0$, получаем $$\displaystyle \lim_{x\to x_0}\, \frac{\varphi(x)-\varphi(x_0)}{x-x_0}=$$ $$=g'(f(x_0)) \displaystyle \lim_{x\to x_0} \, \frac{f(x)-f(x_0)}{x-x_0}+\displaystyle \lim_{x\to x_0} \, r(f(x))\frac{f(x)-f(x_0)}{x-x_0}.$$ Последний предел справа равен нулю, поскольку $\displaystyle \lim_{x\to x_0}\, r(f(x))=0$ (по теореме о непрерывности сложной функции) и $\displaystyle \lim_{x\to x_0}\, \frac{f(x)-f(x_0)}{x-x_0}=f'(x_0)$. Итак, получили, что $\varphi'(x_0) = g'(f(x_0))\cdot f'(x_0)$.

Теорема (о производной обратной функции). Пусть функция $f$ строго возрастает на интервале $I$, непрерывна на $I$, дифференцируема в точке $x_0 \in I$ и $f'(x_0)\neq 0$. Тогда обратная функция $g = f^{-1}$ дифференцируема в точке $y_0 = f(x_0)$, причём $g'(x_0) = \frac{1}{f'(x_0)}$.

Рассмотрим разностное отношение $\frac{g(y)-g(y_0)}{y-y_0}$. Обозначим $x=g(y)$. Тогда $y=f(x)$ и $$\frac{g(y)-g(y_0)}{y-y_0}=\frac{x-x_0}{f(x)-f(x_0)}.$$ Поскольку функция $g$ непрерывна (в силу теоремы о непрерывности обратной функции), то при $y\to y_0$ имеем $x=g(y)\to g(y_0) = x_0$, и поэтому $$\displaystyle \lim_{y\to y_0}\,\frac{g(y)-g(y_0)}{y-y_0}=\frac{1}{\displaystyle \lim_{x\to x_0}\,\frac{f(x)-f(x_0)}{x-x_0}}=\frac{1}{f'(x_0)},$$ т. е. существует предел левой части и он равен $\frac{1}{f'(x_0)}$.

Практические задания
1. Найти производную обратной функции $g(y)=\arcsin x,\, -\frac{\pi}{2}\leqslant y \leqslant\frac{\pi}{2},\, -1\leqslant x\leqslant 1$.

Решение

Обратная функция к $g(y)$: $$f(x)=g^{-1}(y)=\sin y,$$
Пользуясь вышеописанными формулами и таблицей производных получаем: $$g'(y)=(\arcsin x)’ = \frac{1}{x’} = \frac{1}{\cos y}$$ Так как $-\frac{\pi}{2}\leqslant y \leqslant\frac{\pi}{2}$, то $\cos y > 0$, поэтому $\cos y=\sqrt{1-\sin^2 y}=\sqrt{1-x^2}$. Таким образом, $(\arcsin x)’=\frac{1}{\sqrt{1-x^2}}$.

2. Найти производную обратной функции $g(y)=\text{arctg x},\, -\frac{\pi}{2}\leqslant y \leqslant\frac{\pi}{2},\, -\infty <x< +\infty$

Решение

Обратная функция к $g(y)$: $$f(x)=g^{-1}(y)=\text{tg y}$$
Пользуясь вышеописанными формулами и таблицей производных имеем: $$g'(y)=(\text{arctg x})’=\frac{1}{f'(x)}=\cos^2 y=\frac{1}{1+\text{tg}^2 y}=\frac{1}{1+x^2};$$ итак, $(\text{arctg x})’=\frac{1}{1+x^2}$.

3. Найти производную сложной функции $y=\ln^2\arcsin \frac{1}{x},\, x>1$

Решение

Используя вышеприведённые формулы и таблицу производных получаем:$$y’=(\ln^2\arcsin\frac{1}{x})’=2\ln\arcsin\frac{1}{x}(\ln\arcsin\frac{1}{x})’=$$ $$=2\ln\arcsin\frac{1}{x}\frac{1}{\arcsin\frac{1}{x}}(\arcsin\frac{1}{x})’=$$ $$=2\frac{\ln\arcsin\frac{1}{x}}{\arcsin\frac{1}{x}}\frac{1}{\sqrt{1-\frac{1}{x^2}}}(\frac{1}{x})’=-\frac{2\ln\arcsin\frac{1}{x}}{|x|\sqrt{x^2-1}\arcsin\frac{1}{x}}$$

4. Найти производную сложной функции $y=\frac{1}{2a}\ln|\frac{x-a}{x+a}|,\, x\neq a,\, x\neq -a$.

Решение

Используя вышеприведённые формулы и таблицу производных получаем:$$y’=\frac{1}{2a}\frac{(\frac{x-a}{x+a})’}{\frac{x-a}{x+a}}=$$ $$=\frac{1}{2a}\frac{x+a}{x-a}\frac{x+a-(x-a)}{(x+a)^2}=\frac{1}{x^2-a^2}$$

Тестирование. Производная сложной и обратной функции

Пройдите тест для проверки понимания только что прочитанной темы

13.4 Производная сложной функции

Пусть $g$ — отображение открытого множества $E \subset \mathbb{R}^{n}$ в открытое множество $N \subset \mathbb{R}^{m},$ а $f: N \longmapsto \mathbb{R}^{p}.$ Тогда можно рассматривать сложную функцию $F: E \longmapsto \mathbb{R}^{p},$ $F(x) = f(g(x))$   $(x\in E).$ Ее называют композицией $F=f\circ g.$

Теорема. Пусть отображение $g$ дифференцируемо в точке $x_{0}\in E,$ а отображение $f$ дифференцируемо в соответствующей точке $y_{0}=g(x_{0})\in N.$ Тогда композиция $F=f\circ g$ дифференцируема в точке $x_{0}$ и справедливо равенство
$$F'(x_{0})=f'(y_{0})g'(x_{0}). \tag {13.1}$$

Обозначим $A=f'(y_{0}),$ $B=g'(x_{0}).$ При достаточно малой длине вектора $k$ вектор $y_{0}+k\in N$ и справедливо равенство
$$f(y_{0}+k)-f(y_{0})=A(k)+\alpha(k)|k|,$$
где
$$\lim_{k \to 0}\alpha (k)=0 \qquad (\alpha (0)=0). \tag {13.2}$$
(Заметим, что $N$ — открытое множество, и поэтому $y_{0}+k\in N$ при достаточно малых по длине векторах $k.$) Если вектор $h$ достаточно мал, то $x_{0}+h\in E.$ Положим $k\equiv k(h)=g(x_{0}+h)-g(x_{0}).$ Тогда $f(y_{0}+k)= f(g(x_{0}+h))=F(x_{0}+h)$ и получаем
$$F(x_{0}+h)-F(x_{0})=A(k(h))+\alpha (k(h))|k(h)|, \tag {13.3}$$
где
$$k(h)=B(h)+\beta (h)|h|$$
по свойству дифференцируемости отображения $g,$ и $\displaystyle\lim_{h \to 0} \beta (h)=0$. Подставив это в равенство $(13.3),$ получаем
$$F(x_{0}+h)-F(x_{0})=A(B(h))+r(h),$$
где
$$r(h)=A(\beta(h)|h|)+\alpha (k(h))|k(h)|.$$
По определению производной, нужно доказать, что $$\lim_{h \to 0}\frac{|r(h)|}{|h|}=0,$$
и тем самым теорема будет доказана.
Пусть $r_{1}(h)=A(\beta (h)|h|).$ Тогда в силу линейности отображения $А,$
$$\frac{|r_{1}(h)|}{|h|}=| A(\beta (h))| \leqslant \begin{Vmatrix}A\end{Vmatrix}\cdot| \beta (h)|.$$
Но правая часть стремится к нулю при $h\to 0$, и поэтому получаем, что
$$\lim_{h \to 0}\frac{|r_{1}(h)|}{|h|}=0.$$
Теперь положим $r_{2}(h)= \alpha (k(h))|k(h)|.$ Воспользуемся неравенством
$$|k(h)|\leqslant |B(h)|+|h|\cdot|\beta(h)|\leqslant [\begin{Vmatrix}B\end{Vmatrix}+|\beta (h)|]\cdot | h |,$$
откуда
$$\frac{|r_{2}(h)|}{|h|}\leqslant (\begin{Vmatrix}B\end{Vmatrix}+| \beta (h)|)| \alpha (k(h))|.$$
Первый множитель справа ограничен при достаточно малых $h,$ а второй множитель справа стремится к нулю при $h\to 0$ в силу $(13.2).$
Таким образом, $\frac{|r_{}(h)|}{|h|}\leqslant \frac{|r_{1}(h)|}{|h|}+\frac{|r_{2}(h) |}{|h|}$ стремится к нулю при $h\to 0,$ и теорема доказана.

Замечание. В правой части равенства $(13.1)$ мы имеем композицию линейных отображений $f{}'(y_{0})$ и $g{}'(x_{0}).$ Поэтому доказанную теорему можно сформулировать так: производная композиции равна композиции производных.

Цепное правило.
Пусть $z=f(y^{1},\ldots,y^{m})$ – действительная функция. Если положить $y^{i}=g_{i}(x)  (i=1,\ldots,m),$ то получим $z=f(g_{1}(x),\ldots,g_{m}(x)),$ и тогда, согласно правилу дифференцирования сложной функции,
$$\frac{\mathrm{dz} }{\mathrm{d} x}=\frac{\partial f}{\partial y^{1}}\frac{\mathrm{dg_{1}} }{\mathrm{d} x}+\ldots+\frac{\partial f}{\partial y^{m}}\frac{\mathrm{dg_{m}} }{\mathrm{d} x}$$
Положим теперь $y^{i}=g_{i}(x^{1},\ldots,x^{n}) (i=1,\ldots,m)$ и получим сложную функцию $z=f(g_{1}(x^{1},\ldots,x^{n}),\ldots,g_{m}(x^{1},\ldots,x^{n})).$ Если воспользоваться упомянутым только что правилом дифференцирования сложной функции, то получим
$$\frac{\partial z}{\partial x^{i}}=\frac{\partial f}{\partial y^{1}}\frac{\partial g_{1}}{\partial x^{i}}+\ldots+\frac{\partial f}{\partial y^{m}}\frac{\partial g_{m}}{\partial x^{i}} \qquad (i=1,\ldots,n).$$
Это равенство называется цепным правилом.

Цепное правило можно вывести также из только что доказанной теоремы. Действительно, положим в теореме $p = 1,$ т. е. рассмотрим случай, когда $f$ – действительная функция. Тогда $F:E \longmapsto \mathbb{R}$ – действительная функция. Из соотношения $(13.1)$ видно, что матрица производной $F'(x_{0})$ равна произведению матриц $f{}'(y_{0})$ и $g{}'(x_{0}).$ В векторной форме это можно записать так:
$$( \frac{\partial F}{\partial x^{1}}(x_{0}),\ldots,\frac{\partial F}{\partial x^{n}}(x_{0}))=$$
$$=\left ( \frac{\partial f}{\partial y^{1}}(y_{0}),\ldots,\frac{\partial f}{\partial y^{m}}(y_{0}) \right )\cdot\begin{pmatrix}
\frac{\partial g_{1}}{\partial x^{1}}(x_{0})& \ldots& \frac{\partial g_{1}}{\partial x^{n}}(x_{0}) \\
\ldots& \ldots& \ldots \\
\frac{\partial g_{m}}{\partial x^{1}}(x_{0})& \ldots& \frac{\partial g_{m}}{\partial x^{n}}(x_{0}) \\
\end{pmatrix} .$$
В частности,
$$ \frac{\partial F }{\partial x^{i}}=\frac{\partial f}{\partial y^{1}}\frac{\partial g_{1}}{\partial x^{i}}+\ldots +\frac{\partial f}{\partial y^{m}}\frac{\partial g_{m}}{\partial x^{i}} \qquad \qquad (i=1,\ldots,n),$$
и тем самым снова получаем цепное правило.

Примеры решения задач

Рассмотрим примеры задач, в которых фигурируют производные сложных функций. Читателю с целью самопроверки предлагается решить данные примеры самому, а затем сверить свое решение с приведенным.

  1. Найти производную сложной функции $u=\frac{x}{y}-\frac{y}{x},$ где $x=\sin(t),$ $y=\cos(t)$
    Решение

    $\frac{\partial u}{\partial x}=\left (\frac{x}{y}-\frac{y}{x} \right )’= \frac{1}{y}(x)’-y\left ( \frac{1}{x} \right )’=\frac{1}{y}+\frac{y}{x^{2}}$
    $\frac{\partial u}{\partial y}=\left (\frac{x}{y}-\frac{y}{x} \right )’= x\left ( \frac{1}{y} \right )’-\frac{1}{x}(y)’=-\frac{x}{y^{2}}-\frac{1}{x}$
    $\frac{\mathrm{d} x}{\mathrm{d} t}={(\sin(t))}’=\cos(t)\qquad$ $\frac{\mathrm{d} y}{\mathrm{d} t}={(\cos(t))}’=-\sin(t)$
    $\frac{\mathrm{d} u}{\mathrm{d} t}=\frac{\partial u}{\partial x}\frac{\mathrm{d} x}{\mathrm{d} t}+\frac{\partial u}{\partial y}\frac{\mathrm{d} y}{\mathrm{d} t}=\left ( \frac{1}{y}+\frac{y}{x^{2}} \right )\cos(t)+\left ( -\frac{x}{y}-\frac{1}{x} \right )(-\sin(t))$

  2. Найти полную производную сложной функции $u=x+y^{2}+z^{3},$ где $y=\sin(x),$ $z=\cos(x)$
    Решение

    $\frac{\mathrm{d} u}{\mathrm{d} x}=\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}\frac{\mathrm{d} y}{\mathrm{d} x}+\frac{\partial u}{\partial z}\frac{\mathrm{d} z}{\mathrm{d} x}=\\=1+2y\cos(x)+3z^{2}(-\sin(x))=1+2\sin(x)\cos(x)-3\cos^{2}(x)\sin(x)$

  3. Найти полный дифференциал сложной функции $u=\ln^{2}(x^{2}+y^{2}-z^{2})$
    Решение

    Вначале находим частные производные:
    $\frac{\partial u}{\partial x}=2\ln(x^{2}+y^{2}-z^{2})\frac{1}{x^{2}+y^{2}-z^{2}} 2x$
    $\frac{\partial u}{\partial y}=2\ln(x^{2}+y^{2}-z^{2})\frac{1}{x^{2}+y^{2}-z^{2}} 2y$
    $\frac{\partial u}{\partial z}=2\ln(x^{2}+y^{2}-z^{2})\frac{1}{x^{2}+y^{2}-z^{2}} (-2z)$
    Для функции $n$-переменных $y=f(x_{1},x_{2},\ldots ,x_{n})$ полный дифференциал определяется выражением : $dy=\frac{\partial y}{\partial x_{1}}dx_{1}+\frac{\partial y}{\partial x_{2}}dx_{2}+\ldots +\frac{\partial y}{\partial x_{n}}dx_{n}$. Согласно этой формуле, получаем :
    $du=4\ln(x^{2}+y^{2}-z^{2})\frac{1}{x^{2}+y^{2}-z^{2}}(xdx+ydy-zdz)$

  4. Вычислить приближенно $(1,02)^{3,01}$
    Решение

    Рассмотрим функцию $z=z^{y}.$ При $x_{0}=1$ и $y_{0}=3$ имеем $z_{0}=1^{3}=1,$
    $\Delta x=1,02-1=0,02 \qquad \Delta y=3,01-3=0,01.$
    Находим полный дифференциал функции $z=x^{y}$ в любой точке:
    $dz=yx^{y-1}\Delta x+^{y}\ln(x)\Delta y$
    Вычисляем его значения в точке $M(1,3)$ при данных приращениях $\Delta x= 0,02$ и $\Delta y= 0,01$
    $dz=3\cdot 1^{2}\cdot 0,02+1^{3}\cdot \ln(1)\cdot 0,02=0,06$
    Тогда $z=(1,02)^{3,01}\approx z_{0}+dz=$1+0,06=1,06

  5. Найти частные производные второго порядка функции $z=e^{x^{2}y^{2}}$
    Решение

    Вначале найдем частные производные первого порядка:
    $\frac{\partial z}{\partial x}=e^{x^{2}y^{2}}2xy^{2},\qquad \frac{\partial z}{\partial y}=e^{x^{2}y^{2}}2x^{2}y$
    Продифференцировав их еще раз, получим:
    $\frac{\partial^2 z}{\partial x^2}=e^{x^{2}y^{2}}4x^{2}y^{4}+e^{x^{2}y^{2}}2y^{2}$
    $\frac{\partial^2 z}{\partial y^2}=e^{x^{2}y^{2}}4x^{4}y^{2}+e^{x^{2}y^{2}}2x^{2}$
    $\frac{\partial^2 z}{\partial x \partial y}=e^{x^{2}y^{2}}4x^{3}y^{3}+e^{x^{2}y^{2}}4xy$
    $\frac{\partial^2 z}{\partial y \partial x}=e^{x^{2}y^{2}}4x^{3}y^{3}+e^{x^{2}y^{2}}4xy$
    Сравнивая последние два выражения, видим, что $\frac{\partial^2 z}{\partial x \partial y}=\frac{\partial^2 z}{\partial y \partial x}$

  6. Найти полный дифференциал второго порядка функции $z=x^{3}+y^{3}+x^{2}y^{2}$
    Решение

    Вначале находим частные производные до второго порядка:
    $\frac{\partial z}{\partial x}=3x^{2}+2xy^{2},\qquad \frac{\partial z}{\partial y}=3y^{2}+2x^{2}y$
    $\frac{\partial^2 z}{\partial x^2}=6x+2y^{2},\qquad \frac{\partial^2 z}{\partial y^2}=6y+2x^{2},\qquad \frac{\partial^2 z}{\partial x \partial y}=4xy$
    Полный дифференциал второго порядка $d^{2}z$ функции $z=f(x,y)$ выражается формулой:
    $d^{2}z=\frac{\partial^2 z}{\partial x^2}dx^{2}+2\frac{\partial^2 z}{\partial x \partial y}dxdy+\frac{\partial^2 z}{\partial y^2}dy^{2}$
    Следовательно,
    $d^{2}z=(6x+2y^{2})dx^{2}+8xydxdy+(6y+2x^{2})dy^{2}$

Литература

  1. Лысенко З.М. Конспект лекций по математическому анализу.
  2. В. И. Коляда, А. А. Кореновский «Курс лекций по математическому анализу». — Одесса: Астропринт, 2009, ч.1, раздел 13.4 «Производная сложной функции» (стр. 311 — 313).
  3. А. П. Рябушко «Сборник индивидуальных заданий по высшей математике». — Минск: «Вышэйшая школа», 1991, ч.2, разделы 10.2,10.3 «Полный дифференциал. Дифференцирование сложных и неявных функций», «Частные производные высших порядков. Касательная плоскость и нормаль к поверхности» (стр. 212 — 216).
  4. И. И. Ляшко, А.К. Боярчук, Я.Г.Гай, Г.П.Головач «Математический анализ: введение в анализ, производная, интеграл». «М.Едиториал», 2001, глава 2(4), «Производные и дифференциал высших порядков» (стр. 137).

Производная сложной функции

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

6.2 Интегрирование по частям и замена переменной

Теорема (формула интегрирования по частям).
Пусть функции $u(x)$ и $v(x)$ дифференцируемы на интервале $I$. Если одна из функций $u(x)v'(x)$ или $u'(x)v(x)$ имеет первообразную на интервале $I$, то на этом интервале имеет первообразную и другая функция, причем справедливо равенство $$\begin{equation}\label{eq:exp1}\int u(x)v'(x)dx=u(x)v(x)-\int u'(x)v(x)dx\end{equation}.$$

Доказательство сразу следует из правила дифференцирования произведения. Действительно, пусть $u(x)v'(x)$ имеет первообразную. Тогда, по правилу дифференцирования произведения, имеем $$[u(x)v(x)]’=u'(x)v(x)+u(x)v'(x).$$
Отсюда получаем, что $u'(x)v(x)$ является разностью двух производных функций, т. е. разностью двух функций, имеющих первообразные. Поэтому она сама также является производной, т. е. имеет первообразную, и справедливо равенство $\eqref{eq:exp1}$.

Замечание 1.
Коротко правило интегрирования по частям может быть записано так:
$$\int udv=uv-\int vdu.$$
Действительно, в этой записи используется формула для вычисления дифференциала функции $du(x)=u'(x)dx$.

Замечание 2.
Если одна из функций дифференцируема, а другая имеет первообразную, то их произведение (производной на функцию, имеющую первообразную) не обязано иметь первообразную. Такой пример приводится сразу после этого замечания. Поэтому в формулировке теоремы нужно предполагать наличие первообразной у одной из функций $u'(x)v(x)$ или $u(x)v'(x)$.

Утверждение.
Существуют дифференцируемая функция $u$ и имеющая первообразную функция $v$, такие, что $u’v$ не имеет первообразной.

Достаточно показать, что квадрат функции, имеющей первообразную, может не иметь первообразной.
Положим $f(x)=|x|^\alpha \sin\displaystyle\frac{1}{x}$, $x\neq0$, $f(0)=0$. При $\alpha>1$ функция $f$ дифференцируема на $\mathbb{R}$ и ее производная равна
$$\begin{equation*}f'(x) = \begin{cases}\alpha|x|^{\alpha-1}\sin\displaystyle\frac{1}{|x|}-|x|^{\alpha-2}\cos\displaystyle\frac{1}{x},\;  x\neq0, \\ 0,\;  x=0. \end{cases}\end{equation*}$$
Поскольку функция $\alpha|x|^{\alpha-1}\sin\displaystyle\frac{1}{x}\equiv\varphi(x) (x\neq0)$, $\varphi(0) = 0$ непрерывна на $\mathbb{R}$, а значит, имеет первообразную на $\mathbb{R}$, то функция
$$v(x)\equiv|x|^{\alpha-2}\cos\displaystyle\frac{1}{x}=\varphi(x)-f'(x) (x\neq0),\;\; v(0) = 0,$$
имеет первообразную на $\mathbb{R}$ как разность двух функций — $\varphi(x)$ и $f'(x)$, имеющих первообразные на $\mathbb{R}$.
Покажем, что при надлежащем выборе числа $\alpha>1$ функция $v^2(x)$ не имеет первообразной на $\mathbb{R}$. Предположим противное. Пусть существует такая дифференцируемая на $\mathbb{R}$ функция $F$, что для всех $x\in \mathbb{R}$ справедливо равенство
$$F'(x)=v^2(x)=|x|^{2(\alpha-2)}\cos^2\displaystyle\frac{1}{x},\;\; (x\neq0),\;\; F'(0)=0.$$
Для $k = 1, 2, \ldots$ обозначим
$$[a_k, b_k] = \left[\displaystyle\frac{4}{(4k+1)\pi}, \displaystyle\frac{4}{(4k-1)\pi}\right].$$
Если $x\in[a_k, b_k]$, то
$$\displaystyle\frac{1}{x}\in\left[\displaystyle\frac{(4k-1)\pi}{4}, \displaystyle\frac{(4k+1)\pi}{4}\right], \\ \displaystyle\frac{2}{x}\in\left[\displaystyle\frac{(4k-1)\pi}{4}, \displaystyle\frac{(4k+1)\pi}{4}\right]=\left[2k\pi-\displaystyle\frac{\pi}{2}, 2k\pi+\displaystyle\frac{\pi}{2}\right].$$
Поэтому для $x\in[a_k, b_k]$ имеем
$$\cos^2\displaystyle\frac{1}{x}=\displaystyle\frac{1+\cos\displaystyle\frac{2}{x}}{2}\geqslant\displaystyle\frac{1}{2},$$
так что $F'(x)\geqslant\displaystyle\frac{1}{2}x^{2(\alpha-2)}, x\in[A_k, b_k]$. По теореме Лагранжа получим
$$F(b_k)-F(a_k)=F'(\xi_k)(b_k-a_k)\geqslant\displaystyle\frac{1}{2}\xi^{2(\alpha-2)}_k(b_k-a_k)\geqslant\displaystyle\frac{b_k-a_k}{2}b^{2(\alpha-2)}_k,$$
где $\xi_k\in[a_k, b_k]$, а число $\alpha>1$ будет выбрано так, что $\alpha<2$. Отсюда получим
$$F(a_k)\leqslant F(b_k)-\displaystyle\frac{b_k-a_k}{2}b^{2(\alpha-2)}_k.$$
Заметим, что отрезки $[a_k, b_k]$ попарно не пересекаются и, так как $F'(x)\geqslant0$, то функция $F$ не убывает. Значит,
$$F(b_{k+1})\leqslant F(a_k)\leqslant F(b_k)-\displaystyle\frac{b_k-a_k}{2}b^{2(\alpha-2)}_k.$$
Отсюда следует, что
$$\begin{equation}\label{eq:exp2}F(b_{k+1})\leqslant F(b_1)-\displaystyle\frac{1}{2}\sum^{k}_{s=1}(b_s-a_s)b^{2(\alpha-2)}_s.\end{equation}$$
Оценим последнюю сумму справа. Имеем
$$b_s-a_s=\displaystyle\frac{8}{\pi}\displaystyle\frac{1}{(4s+1)(4s-1)},$$
так что
$$\sum^{k}_{s=1}(b_s-a_s)b^{2(\alpha-2)}_s=\\=c_s\sum^{k}_{s=1}\displaystyle\frac{1}{(4s+1)(4s-1)}\left(\displaystyle\frac{1}{4s-1}\right)^{2(\alpha-2)}\geqslant c’_s\sum^{k}_{s=1}\displaystyle\frac{1}{s^{2\alpha-2}}.$$
Если $2\alpha-2\leqslant1$, т. е. $\alpha\leqslant\displaystyle\frac{3}{2}$, то $\sum\limits^k_{s=1}\displaystyle\frac{1}{s^{2\alpha-2}}\rightarrow\infty(k\rightarrow\infty)$. Поэтому из $\eqref{eq:exp2}$ следует, что $F(b_{k+1})\rightarrow-\infty$ при $k\rightarrow\infty$. Но поскольку $b_{k+1}\rightarrow+0 (k\rightarrow\infty)$, то это противоречит непрерывности функции $F$ в точке $x_0=0$ справа, которая вытекает из дифференцируемости функции $F$ в нуле.

Пример 1.
$\int x e^x dx=\begin{bmatrix}u=x, & dv=e^x dx\\du=dx, & v=e^x\end{bmatrix}=x e^x-\int e^x dx=x e^x-e^x+C.$

Пример 2. 
$\int x\cos x dx=\begin{bmatrix}u=x, & dv=\cos x dx\\du=dx, & v=\sin x\end{bmatrix}=\\=x\sin x-\int\sin x dx=x\sin x+\cos x+C.$

Пример 3. 
$\int x\ln x dx=\begin{bmatrix}u=\ln x, & dv=x dx\\du=\displaystyle\frac{dx}{x}, & v=\displaystyle\frac{x^2}{2}\end{bmatrix}=\\=\displaystyle\frac{x^2}{2}\ln x-\displaystyle\frac{1}{2}\int x dx=\displaystyle\frac{x^2}{2}\ln x-\displaystyle\frac{x^2}{4}+C.$

Следующий пример показывает такой способ применения формулы интегрирования по частям, когда в правой части появляется такой же интеграл, как и в левой части. Тогда искомый интеграл может быть найден из полученного равенства.

Пример 4. 
$\int e^x\cos xdx=\begin{bmatrix}u=e^x, & dv=\cos xdx\\du=e^x dx, & v=\sin x\end{bmatrix}=\\=e^x\sin x-\int e^x\sin xdx=e^x\sin x-\begin{bmatrix}u=e^x, & dv=\sin xdx\\du=e^x dx, & v=-\cos x\end{bmatrix}=\\=e^x\sin x+e^x\cos x-\int e^x\cos xdx.$
Из этого равенства находим
$$\int e^x\cos xdx=\displaystyle\frac{e^x}{2}[\sin x+\cos x] + C.$$

Теорема (о замене переменной в интеграле). Пусть функция $f$ имеет первообразную на интервале $I$, т. е.
$$\int f(t)dt=F(t)+C.$$
Пусть, далее, функция $\varphi$ дифференцируема на интервале $\Delta$ и $\varphi(\Delta)\subset I$. Тогда справедливо равенство
$$\int f(\varphi(x))\varphi'(x)dx=F(\varphi(x))+C.$$

Действительно, по правилу дифференцирования сложной функции имеем
$$[F(\varphi(x))]’=F'(\varphi(x))\varphi'(x)=f(\varphi(x))\varphi'(x).$$

Пример 1. $\int\sin^3 xdx=\int\sin x(1-\cos^2 x)dx=[\cos x = t, dt =-\sin xdx]=\\=\int(t^2-1)dt=\displaystyle\frac{t^3}{3}-t+C=\displaystyle\frac{\cos^3 x}{3}-\cos x+C.$

Пример 2. $\int\displaystyle\frac{dx}{1+e^x}=\begin{bmatrix}\text{преобразуем} & \displaystyle\frac{1}{1+e^x}=\displaystyle\frac{1}{e^x(e^-x+1)}=\displaystyle\frac{e^{-x}}{1+e^{-x}}\\ \text{положим} & 1+e^{-x}=t, dt=-e^{-x}dx\end{bmatrix}=-\int\displaystyle\frac{dt}{t}=\\=-\ln|t|+C=-\ln(1+e^{-x})+C=-\ln\displaystyle\frac{1+e^x}{e^x}+C=x-\ln(1+e^x)+C.$

Замечание. Мы использовали равенство $\int\displaystyle\frac{dx}{x}=\ln|x|+C$. Это равенство следует применять отдельно для промежутков $(0, +\infty)$ и $(-\infty, 0)$.
При $x>0$ оно справедливо по той причине, что $|x|=x,$ $(\ln x+C)’=\displaystyle\frac{1}{x}$.
Если же $x<0$, то $|x|=-x$, $\ln(-x)+C)’=\displaystyle\frac{1}{-x}\cdot(-1)=\displaystyle\frac{1}{x}$, так что и в этом случае равенство верно.

Итак, если исходный интеграл представлен в виде $\int f(\varphi(x))\varphi'(x)dx$, то, выполняя замену переменной $t=\varphi(x)$, мы приходим к интегралу $\int f(t)dt$. Часто замену переменной в интеграле $\int g(x)dx$ применяют в виде $x = \psi(t)$, затем вычисляют интеграл по $t$, а чтобы вернуться к старой переменной $x$, нужно выразить новую переменную $t$ через $x$.

Пример. Пусть $I=\int\sqrt{1-x^2}dx$.
Для вычисления этого интеграла положим $x=\sin t$. Тогда
$$dx=\cos tdt, \sqrt{1-x^2}=\sqrt{1-\sin^2 t}=\sqrt{\cos^2 t}=\cos t.$$
Подставляя это в исходный интеграл, получаем
$$I=\int\cos^2 tdt=\int\displaystyle\frac{1+\cos 2t}{2}dt=\displaystyle\frac{t}{2}+\displaystyle\frac{\sin 2t}{4}+C.$$
Из равенства $x=\sin t$ имеем $t=\arcsin x$, так что
$$I=\displaystyle\frac{\arcsin x}{2}+\displaystyle\frac{x\sqrt{1-x^2}}{2}+C.$$
Вычислим этот интеграл еще одним способом, основанным на применении формулы интегрирования по частям.
$$I=\int\sqrt{1-x^2}dx=\begin{bmatrix}u=\sqrt{1-x^2}, & dv=dx\\du=-\displaystyle\frac{x}{\sqrt{1-x^2}}dx, & v=x\end{bmatrix}=\\=x\sqrt{1-x^2}+\int\displaystyle\frac{x^2}{\sqrt{1-x^2}}dx=\\=x\sqrt{1-x^2}+\int\displaystyle\frac{x^2-1+1}{\sqrt{1-x^2}}dx=x\sqrt{1-x^2}-I+\int\displaystyle\frac{dx}{\sqrt{1-x^2}}.$$
Воспользовавшись теперь равенством $\int\frac{dx}{\sqrt{1-x^2}}=\arcsin x+c$, вытекающим из того, что $(\arcsin x+C)’=\displaystyle\frac{1}{\sqrt{1-x^2}}$, получим $I=x\sqrt{1-x^2}-I+\arcsin x$. Отсюда следует
$$I=\displaystyle\frac{1}{2}[x\sqrt{1-x^2}+\arcsin x]+C.$$

Решение примеров

Интегрирование по частям:

  1. $\int\text{arctg}\:xdx$
    Решение

    $\int\text{arctg}\:xdx=\begin{bmatrix}\text{arctg}\:{x}=u, du=\displaystyle\frac{dx}{1+x^2}\\dx=dv, v=x\end{bmatrix}=x\:\text{arctg}\: {x}-\int\displaystyle\frac{xdx}{1+x^2}=\\=x\:\text{arctg}\: {x}-\displaystyle\frac{1}{2}\int\displaystyle\frac{dx^2}{1+x^2}=x\:\text{arctg}\: {x}-\displaystyle\frac{1}{2}\ln(1 + x^2) + C.$

  2. $\int x\sin{x}dx$
    Решение

    $\int x\sin{x}dx=\begin{bmatrix}x=u, du=dx\\ \sin{x}=dv, v=-\cos{x}\end{bmatrix}=-x\cos{x}+\int\cos{x}dx=\\=-x\cos{x}+\sin{x}+C.$

  3. $\int xe^{x}dx$
    Решение

    $\int xe^{x}dx=\begin{bmatrix}u=x, du=dx\\dv=e^{x}dx, v=e^x\end{bmatrix}=xe^x-\int e^{x}dx=xe^x-e^x+C.$

Замена переменной:

  1. $\int\displaystyle\frac{dx}{\sqrt{e^x-1}}$
    Решение

    $\int\displaystyle\frac{dx}{\sqrt{e^x-1}}=\begin{bmatrix}\sqrt{e^x-1}=t, x=\ln(t^2+1)\\dx=\displaystyle\frac{2tdt}{t^2+1}\end{bmatrix}=2\int\displaystyle\frac{tdt}{t(t^2+1)}=\\=2\int\frac{dt}{t^2+1}=2\: \text{arctg}\: t+C.$

  2. $\int\displaystyle\frac{x^{2}dx}{5-x^6}$
    Решение

    $\int\frac{x^2dx}{5-x^6}=\begin{bmatrix}x^3=t\\dt=3x^2dx\\x^6=t^2\end{bmatrix}=\frac{1}{3}\int\frac{dt}{5-t^2}=\frac{1}{3}\int\frac{dt}{(\sqrt{5})^2-t^2}=\\=\frac{1}{6\sqrt{5}}\ln\left|\frac{\sqrt{5}+t}{\sqrt{5}-t}\right|+C=[t=x^3]=\frac{1}{6\sqrt{5}}\ln\left|\frac{\sqrt{5}+x^3}{\sqrt{5}-x^3}\right|+C.$

Интегрирование по частям и замена переменной

Пройдя этот тест, вы закрепите пройденный ранее материал по теме «Интегрирование по частям и замена переменной»

Таблица лучших: Интегрирование по частям и замена переменной

максимум из 18 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных
Литература

Смотрите также

  1. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 2 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1970 (стр.23, 31)
  2. Тер-Крикоров А. М., Шабунин М. И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М. И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001  (стр. 277, 281)
  3. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003 (стр. 461, 464)