Суммируемостью рядов Фурье методом Фейера

Ядро Фейера

Зададим непрерывную и $2\pi$-периодическую функцию $f(x)$. Рассмотрим последовательность $S_n(x)$ частичных сумм ряда Фурье функции $f(x)$, где $$S_n(x) = \dfrac{1}{\pi} \int \limits_{-\pi}^\pi f(x + t) \cdot D_n(t)dt,(1)$$ а $D_n(t)$ — ядро Дирихле: $$D_n(t) = \dfrac{1}{2} + \cos t + \ldots + \cos nt = \dfrac{\sin(n + \frac{1}{2})t}{2 \cdot \sin \frac{t}{2}}.(2)$$ Определим суммы Фейера как средние арифметические сумм $S_0(x), S_1(x),\ldots, S_n(x)$: $$\sigma_n(x) = \dfrac{S_0(x) + \ldots + S_n(x)}{n+1}.(3)$$

Подставляя в данную формулу выражение для частичной суммы ряда Фурье через ядро Дирихле, получаем, что $$\sigma_n(x) = \dfrac{1}{\pi} \int \limits_{-\pi}^\pi f(x + t) \dfrac{D_0(t) + \ldots + D_n(t)}{n + 1} dt.$$ Обозначим $$F_n(t) = \dfrac{D_0(t) + \ldots + D_n(t)}{n + 1},(4)$$ тогда $$\sigma_n(x) = \dfrac{1}{\pi} \int \limits_{-\pi}^\pi f(x + t) F_n(t) dt.(5)$$

Функцию $F_n(t)$ назовём ядром Фейера. Приведём следующие свойства ядра Фейера:

  1. $F_n(t)$ — четная, $2\pi$-периодическая и непрерывная функция;
  2. $\dfrac{1}{\pi} \int \limits_{-\pi}^\pi F_n(t)dt = 1$;
  3. $F_n(t) \ge 0$;
  4. $\lim \limits_{n\to\infty} \max \limits_{\delta \le t \le \pi} F_n(t) = 0$ при любом $\delta \in (0, \pi)$.
  5. Доказательство

    Свойства 1) и 2) сразу следуют из формулы (4) и соответствующих свойств ядер Дирихле.

    Докажем свойство 3). Подставляя в формулу (4) для ядра Фейера выражение (2) для ядер Дирихле, получаем $$(n + 1) \cdot F_n(t) = D_0(t) + \ldots + D_n(t) = \sum_{k=0}^{n}\dfrac{\sin(k + \frac{1}{2})x}{2\sin \frac{x}{2}} =$$ $$=\dfrac{1}{4\sin^2 \frac{x}{2}}\sum_{k=0}^{n}2 \cdot \sin \frac{x}{2} \cdot \sin(k + \frac{1}{2})x = \dfrac{1 — \cos(n + 1)x}{4\sin^2 \frac{x}{2}} \ge 0. (6)$$

    Докажем свойство 4). Из равенства (6) следует, что $\sup \limits_{x \in [\delta, \pi]} F_n(x) \le \dfrac{2}{4\cdot \sin^2 \frac{\delta}{2}} \cdot \dfrac{1}{n + 1} \rightarrow 0$ при $n \rightarrow \infty$, $0 < \delta < \pi$.

    Теорема (Фейера).

    Последовательность $\{\sigma_n(x)\}$ сумм Фейера $2\pi$-периодической непрерывной функции $f(x)$ равномерно сходится к функции $f(x)$.

    Доказательство.

    Докажем равномерную непрерывность $f(x)$ на $\mathbb{R}$.

    Спойлер

    По теореме Кантора функция $f(x)$ равномерно непрерывна на отрезке $[-2\pi, 2\pi]$. Поэтому для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для любых $x, t \in [-2\pi, 2\pi]$ таких, что $\left| x — t \right| < \delta$, выполнено неравенство $\left| f(x) — f(t) \right| < \varepsilon$.

    Пусть $\xi$ и $\eta$ – произвольные числа такие, что $\left| \xi — \eta \right| < \delta < \pi$. Тогда для любого $\xi \in \mathbb{R}$ надётся целое число $k$ такое, что $\xi — 2k\pi = x \in [-\pi, \pi]$. Так как по условию $\left| \xi — \eta \right| < \delta < \pi$, то $t = \eta — 2k\pi \in [-2\pi, 2\pi]$, и поэтому $\left| f(\xi) — f(\eta) \right| = \left| f(\xi — 2k \pi) — f(\eta — 2k \pi) \right| = \left| f(x) — f(t) \right| < \varepsilon$, что доказывает равномерную непрерывность функции $f(x)$ на $\mathbb{R}$.

    [свернуть]

    Используя свойства 2) и 3) ядра Фейера, оценим разность $\sigma(x) — f(x)$. Получаем, что $\sigma(x) — f(x) = \dfrac{1}{\pi} \int \limits_{-\pi}^\pi (f(x + t) — f(x)) F_n(t)dt$, $$\left| \sigma(x) — f(x) \right| \le \dfrac{1}{\pi} \int \limits_{-\pi}^\pi \left| f(x + t) — f(x) \right| F_n(t)dt. (7)$$

    Зафиксируем $\varepsilon > 0$. Воспользуемся равномерной непрерывностью функции $f(x)$ на $\mathbb{R}$ и найдём $\delta > 0$ такое, что $\forall x \in \mathbb{R}$ и $\forall \left| t \right| < \delta$ выполнено равенство $\left| f(x + t) — f(x) \right| < \dfrac{\varepsilon}{2}$.

    Разобьём отрезок интегрирования $[-\pi, \pi]$ в формуле (7) на три отрезка: $[-\pi, -\delta], [-\delta, \delta]$ и $[\delta, \pi]$.

    Воспользовавшись свойствами 2) и 3) ядра Фейера, получаем, что $$\dfrac{1}{\pi} \int \limits^{\delta}_{-\delta} \left| f(x + t) — f(x) \right| F_n(t) dt \le \dfrac{1}{\pi} \int \limits^{\delta}_{-\delta} \dfrac{\varepsilon}{2} F_n(t) dt \le$$ $$\le \dfrac{\varepsilon}{2\pi} \int \limits^{\delta}_{-\delta} F_n(t)dt = \dfrac{\varepsilon}{2}. (8)$$

    Из непрерывности на $\mathbb{R}$ $2\pi$-периодичной функции $f(x)$ следует её ограниченность на $\mathbb{R}$. Пусть $\left| f(x) \right| < M$. Воспользуемся свойством 4) ядра Фейера и найдём такое $N$, что $\forall n > N$ выполнено неравенство $$\max \limits_{t \in [\delta, \pi]} F_n(t) < \frac{\varepsilon}{8M}.$$

    Тогда $\forall n > N$ справедливо неравенство $$\dfrac{1}{\pi} \int \limits^{\pi}_{\delta} \left| f(x + t) — f(x) \right| F_n(t)dt \le \dfrac{1}{\pi} \int \limits^{\pi}_{\delta} (\left| f(x + t) \right| + \left| f(x) \right|) F_n(t)dt \le$$ $$\le \dfrac{2M}{\pi} (\pi — \delta) \max \limits_{t \in [\delta, \pi]} F_n(t) < 2M \dfrac{\varepsilon}{8M} = \dfrac{\varepsilon}{4}. (9)$$

    Аналогично для всех $n > N$: $$\dfrac{1}{\pi} \int \limits^{-\delta}_{-\pi} \left| f(x + t) — f(x) \right| F_n(t)dt < \dfrac{\varepsilon}{4}. (10)$$

    Следовательно, для любого $x \in \mathbb{R}$ и для всех $n > N$ выполнено неравенство $\left| \sigma_n(x) — f(x) \right| < \varepsilon$ (из неравенств (7) — (10)), которое означает, что последовательность сумм Фейера $\sigma_n(x)$ равномерно сходится на $\mathbb{R}$ к функции $f(x)$.

    Спойлер

    Задан ряд $1 — 1 + 1 — 1 + \ldots$. Данный ряд расходится, но суммируется в смысле Фейера. Найдём его частичные суммы $S_{2n} = 0$, $S_{2n-1} = 1$ и средние суммы Фейера $\sigma_{2n} = \dfrac{1}{2}$, $\sigma_{2n-1} = \dfrac{n}{2n-1}$, $n = 1, 2, \ldots$. Следовательно, $\sigma_n \to \dfrac{1}{2}$.

    [свернуть]

    Литература

    Суммируемость рядов Фурье методом Фейера

    Тест по теме «Суммируемость рядов Фурье методом Фейера».

Замкнутые и полные ортонормированные системы

Рассмотрим произвольную ортонормированную систему $\{ { \varphi  }_{ k }\}$ в евклидовом пространстве $R$.

Определение

Ортонормированная система $\{ { \varphi  }_{ k }\}$ называется замкнутой, если для любого $f\in R$ и для любого $\varepsilon >0$ найдется такая линейная комбинация конечного числа элементов $\{ { \varphi  }_{ k }\},$ что будет верно следующее неравенство:
$$\left\| f-\sum _{ k=1 }^{ n }{ { c }_{ k }{ \varphi  }_{ k } }  \right\| <\varepsilon.$$

Запишем неравенство Бесселя:
$$\sum _{ k=1 }^{ \infty  }{ { a }_{ k }^{ 2 } } \le { \left\| f \right\|  }^{ 2 },$$
где ${ \{ a }_{ k }\}$ — коэффициенты Фурье элемента $f$ по некоторой ортонормированной системе.

Теорема 1 (равенство Парсеваля)

Если ортонормированная система $\{ { \varphi  }_{ k }\} $ замкнута для любого элемента $f\in R$, то неравенство Бесселя обращается в равенство Парсеваля:
$$\left\| \sum _{ k=1 }^{ \infty  }{ { (f,{ \varphi  }_{ k }) }^{ 2 } }  \right\| ={ \left\| f \right\|  }^{ 2 }.$$

Доказательство

Т.к. система $\{ { \varphi  }_{ k }\} $ замкнута — найдутся такие $n\in N$ и  коэффициенты $c,\quad …\quad { c }_{ n }$, что
$${ \left\| f-\sum _{ k=1 }^{ n }{ { c }_{ k }{ \varphi  }_{ k } }  \right\|  }^{ 2 }<{ \varepsilon  }^{ 2 }.$$
В силу свойства минимальности коэффициентов Фурье и следствия 1 из него имеем:
$${ \left\| f \right\| }^{ 2 }-\sum _{ k=1 }^{ n }{ { a }_{ k }^{ 2 } } ={ \left\| f-\sum _{ k=1 }^{ n }{ { a }_{ k }{ \varphi }_{ k } } \right\| }^{ 2 }\le $$
$$\le{ \left\| f-\sum _{ k=1 }^{ n }{ c_{ k }{ \varphi }_{ k } } \right\| }^{ 2 }<{ \varepsilon }^{ 2 },$$
откуда, благодаря неравенству Бесселя получаем:
$$0\le { \left\| f \right\|  }^{ 2 }-\sum _{ k=1 }^{ n }{ { a }_{ k }^{ 2 } } <{ \varepsilon  }^{ 2 }$$
Т.к. когда $n$ возрастает то выражение ${ \left\| f \right\|  }^{ 2 }-\sum _{ k=1 }^{ n }{ { a }_{ k }^{ 2 } } $ убывает. Отсюда имеем, что для всех номеров $m\ge n$ справедливо неравенство:
$${ \left\| f \right\|  }^{ 2 }-\sum _{ k=1 }^{ \infty  }{ { a }_{ k }^{ 2 } } <{ \varepsilon  }^{ 2 },$$
а это и означает, что
$${ \left\| f \right\| }^{ 2 }=\sum _{ k=1 }^{ \infty }{ { a }_{ k }^{ 2 } } =\sum _{ k=1 }^{ \infty }{ { (f,{ \varphi }_{ k }) }^{ 2 } }.$$

[свернуть]

Теорема 2

Если ортонормированная система $\{ { \varphi  }_{ k }\}$ замкнута в $R$, то для любого элемента $f\in R$ его ряд Фурье сходится к $f$ по норме пространства $R:$
$$\lim _{ n\rightarrow \infty  }{ \left\| f-\sum _{ k=1 }^{ n }{ (f,{ \varphi  }_{ k }) } { \varphi  }_{ k } \right\|  } =0.$$

Доказательство

Доказательство следует из теоремы 1 и следствия 1 из свойства минимальности коэффициентов Фурье. В силу равенства Парсеваля:
$${ \left\| f-\sum _{ k=1 }^{ n }{ (f,{ \varphi }_{ k }){ \varphi }_{ k } } \right\| }^{ 2 }={ \left\| f \right\| }^{ 2 }-{ \sum _{ k=1 }^{ n }{ { (f,{ \varphi }_{ k }) }^{ 2 } } }\rightarrow 0\, ,$$
$$(n\rightarrow \infty ).$$

[свернуть]

Определение

$\{ { \varphi  }_{ k }\}$ — ортонормированная система, $ f\in R$. $\{ { \varphi  }_{ k }\} $ называется полной, если из равенств $(f,{ \varphi  }_{ k })=0,\quad k=\overline { 1,n }$ следует, что $f$ — нулевой элемент в $R$.

Теорема 3

Если ортонормированная система замкнута, то она полная.

Доказательство

Пусть $\{ { \varphi  }_{ k }\}$ — полная ортонормированная система, $f$ — ортогональный ко всем $\ { \varphi  }_{ k }\ $. Тогда все коэффициенты Фурье элемента $f$ по системе $\{ { \varphi  }_{ k }\} $ равны нулю и, в  силу равенства Парсеваля:
$${ \left\| f \right\|  }^{ 2 }=\sum _{ k=1 }^{ \infty  }{ { (f,{ \varphi  }_{ k }) }^{ 2 } } =\sum _{ k=1 }^{ \infty  }{ 0 } =0.$$
Из аксиом нормы следует, что $f$ — нулевой элемент пространства $R.$

[свернуть]

Литература

Условия сходимости тригонометрического ряда Фурье в точке. Признак Дини. Следствия

Необходимые понятия

Условие Гёльдера. Будем говорить, что функция $f(x)$ удовлетворяет в точке $x_0$ условия Гёльдера, если существуют односторонние конечные пределы $f(x_0 \pm 0)$ и такие числа $\delta > 0$, $\alpha \in (0,1]$ и $c_0 > 0$, что для всех $t \in (0,\delta)$ выполнены неравенства: $|f(x_0+t)-f(x_0+0)|\leq c_0t^{\alpha }$, $|f(x_0-t)-f(x_0-0)|\leq c_0t^{\alpha }$.

Формула Дирихле. Преобразованной формулой Дирихле называют формулу вида:
$$S_n(x_0)= \frac{1}{\pi}\int\limits_{0}^{\pi}(f(x_0+t)+f(x_0-t))D_n(t)dt \quad (1),$$ где $D_n(t)=\frac{1}{2}+ \cos t + \ldots+ \cos nt = \frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t}{2}} (2)$ — ядро Дирихле.

Используя формулы $(1)$ и $(2)$, запишем частичную сумму ряда Фурье в следующем виде:
$$S_n(x_0)= \frac{1}{\pi}\int\limits_{0}^{\pi}\frac{f(x_0+t)+f(x_0-t)}{2\sin\frac{t}{2}}\sin \left ( n+\frac{1}{2} \right ) t dt$$
$$\Rightarrow \lim\limits_{n \to \infty }S_n(x_0) — \frac{1}{\pi}\int\limits_{0}^{\pi}\frac{f(x_0+t)+f(x_0-t)}{2\sin\frac{t}{2}} \cdot \\ \cdot \sin \left (n+\frac{1}{2} \right )t dt = 0 \quad (3)$$

Для $f \equiv \frac{1}{2}$ формула $(3)$ принимает следующий вид: $$ \lim\limits_{n \to \infty }\frac{1}{\delta}\frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t}{2}}dt=\frac{1}{2}, 0<\delta <\pi. \quad (4)$$

Сходимость ряда Фурье в точке

Теорема. Пусть $f(x)$ — $2\pi$-периодическая абсолютно интегрируема на $[-\pi,\pi]$ функция и в точке $x_0$ удовлетворяет условию Гёльдера. Тогда ряд Фурье функции $f(x)$ в точке $x_0$ сходится к числу $$\frac{f(x_0+0)+f(x_0-0)}{2}.$$

Если в точке $x_0$ функция $f(x)$ — непрерывна, то в этой точке сумма ряда равна $f(x_0)$.

Доказательство

Так как функция $f(x)$ удовлетворяет в точке $x_0$ условию Гёльдера, то при $\alpha > 0$ и $0 < t$ $ < \delta$ выполнены неравенства (1), (2).

Запишем при заданном $\delta > 0$ равенства $(3)$ и $(4)$. Умножая равенство $(4)$ на $f(x_0+0)+f(x_0-0)$ и вычитая результат из равенства $(3)$, получаем $$ \lim\limits_{n \to \infty} (S_n(x_0) — \frac{f(x_0+0)+f(x_0-0)}{2} — \\ — \frac{1}{\pi}\int\limits_{0}^{\delta}\frac{f(x_0+t)+f(x_0-t)-f(x_0+0)-f(x_0-0)}{2\sin \frac{t}{2}} \cdot \\ \cdot \sin \left (n + \frac{1}{2} \right )t \, dt ) = 0. \quad (5)$$

Из условия Гёльдера следует, что функция $$\Phi(t)= \frac{f(x_0+t)+f(x_0-t)-f(x_0+0)-f(x_0-0)}{2\sin \frac{t}{2}}.$$ абсолютно интегрируема на отрезке $[0,\delta]$. В самом деле, применяя неравенство Гёльдера, получаем, что для функции $\Phi(t)$ справедливо следующее неравенство: $|\Phi(t)| \leq \frac{2c_0t^{\alpha }}{\frac{2}{\pi}t} = \pi c_0t^{\alpha — 1} (6)$, где $\alpha \in (0,1]$.

В силу признака сравнения для несобственных интегралов из неравенства $(6)$ следует, что $\Phi(t)$ абсолютно интергрируема на $[0,\delta].$

В силу леммы Римана $$\lim\limits_{n \to \infty}\int\limits_{0}^{\delta}\Phi(t)\sin \left (n + \frac{1}{2} \right)t\cdot dt = 0 .$$

Из формулы $(5)$ теперь следует, что $$\lim\limits_{n \to \infty}S_n(x_0) = \frac{f(x_0+0)+f(x_0-0)}{2} .$$

[свернуть]

Следствие 1. Если $2\pi$-периодическая и абсолютно интегрируема на $[-\pi,\pi]$ функция $f(x)$ имеет в точке $x_0$ производную, то ее ряд Фурье сходится в этой точке к $f(x_0)$.

Следствие 2. Если $2\pi$-периодическая и абсолютно интегрируема на $[-\pi,\pi]$ функция $f(x)$ имеет в точке $x_0$ обе односторонние производные, то ее ряд Фурье сходится в этой точке к $\frac{f(x_0+0)+f(x_0-0)}{2}.$

Следствие 3. Если $2\pi$-периодическая и абсолютно интегрируема на $[-\pi,\pi]$ функция $f(x)$ удовлетворяет в точках $-\pi$ и $\pi$ условию Гёльдера, то в силу периодичности сумма ряда Фурье в точках $-\pi$ и $\pi$ равна $$\frac{f(\pi-0)+ f(-\pi+0)}{2}.$$

Признак Дини

Определение. Пусть $f(x)$ — $2\pi$-периодическая функция, Точка $x_0$ будет регулярной точкой функции $f(x)$, если

    1) существуют конечные левый и правый пределы $\lim\limits_{x \to x_0+0 }f(x)= \lim\limits_{x \to x_0-0 }f(x)= f(x_0+0)=f(x_0-0),$
    2) $f(x_0)=\frac{f(x_0+0)+f(x_0-0)}{2}.$

Теорема. Пусть $f(x)$ — $2\pi$-периодическая абсолютно интегрируема на $[-\pi,\pi]$ функция и точка $x_0 \in \mathbb{R}$ — регулярная точка функции $f(x)$. Пусть функция $f(x)$ удовлетворяет в точке $x_0$ условиям Дини: существуют несобственные интегралы $$\int\limits_{0}^{h}\frac{|f(x_0+t)-f(x_0+0)|}{t}dt, \\ \int\limits_{0}^{h}\frac{|f(x_0-t)-f(x_0-0)|}{t}dt,$$

тогда ряд Фурье функции $f(x)$ в точке $x_0$ имеет сумму $f(x_0)$, т.е. $$ \lim\limits_{n \to \infty }S_n(x_0)=f(x_0)=\frac{f(x_0+0)+f(x_0-0)}{2}.$$

Доказательство

Для частичной суммы $S_n(x)$ ряда Фурье имеет место интегральное представление $(1)$. И в силу равенства $\frac{2}{\pi }\int\limits_{0}^{\pi }D_n(t) \, dt=1,$
$$ f(x_0)= \frac{1}{\pi }\int\limits_{0}^{\pi }f(x_0+0)+f(x_0-0)D_n(t) \, dt$$

Тогда имеем $$S_n(x_0)-f(x_0) = \frac{1}{\pi}\int\limits_{0}^{\pi}(f(x_0+t)-f(x_0+0))D_n(t) \, dt + $$ $$+\frac{1}{\pi}\int\limits_{0}^{\pi}(f(x_0-t)-f(x_0-0))D_n(t) \, dt. \quad(7)$$

Очевидно, что теорема будет доказана, если докажем, что оба интеграла в формуле $(7)$ имеют пределы при $n \to \infty $ равные $0$. Рассмотрим первый интеграл: $$I_n(x_0)=\int\limits_{0}^{\pi}(f(x_0+t)-f(x_0+0))D_n(t)dt. $$

В точке $x_0$ выполняется условие Дини: сходится несобственный интеграл $$\int\limits_{0}^{h}\frac{|f(x_0+t)-f(x_0+0)|}{t} \, dt .$$

Поэтому для любого $\varepsilon > 0$ существует $\delta \in (0, h)$ такое, что $$\int\limits_{0}^{\delta }\frac{\left | f(x_0+t)-f(x_0+0) \right |}{t}dt < \frac{\varepsilon }{\pi }.$$

По выбранному $\varepsilon > 0$ и $\delta > 0$ интеграл $I_n(x_0)$ представим в виде $I_n(x_0)=A_n(x_0)+B_n(x_0)$, где
$$A_n(x_0)=\int\limits_{0}^{\delta }(f(x_0+t)-f(x_0+0))D_n(t)dt ,$$ $$B_n(x_0)=\int\limits_{\delta}^{\pi }(f(x_0+t)-f(x_0+0))D_n(t)dt .$$

Рассмотрим сначала $A_n(x_0)$. Используя оценку $\left | D_n(t) \right |<\frac{\pi}{2t},$ для любого $t \in (0,\pi)$, получаем, что $$\left | (f(x_0+t)-f(x_0+0))D_n(t) \right | \leq$$ $$\leq \frac{\pi}{2} \cdot \frac{f(x_0+t)-f(x_0+0)}{t}$$

для всех $t \in (0, \delta)$.

Поэтому $$A_n(x_0) \leq \frac{\pi}{2} \int\limits_{0}^{\delta } \frac{|f(x_0+t)-f(x_0+0)|}{t}dt< \frac{\varepsilon }{2}. $$

Перейдем к оценке интеграла $B_n(x_0)$ при $n \to \infty $. Для этого введем функцию $$ \Phi (t)=\left\{\begin{matrix}
\frac{f(x_0+t)-f(x_0+0)}{2\sin \frac{t}{2}}, 0< \delta \leq t \leq \pi, \\ 0, -\pi\leq t< \delta . \end{matrix}\right. $$

$$B_n(x_0)=\int\limits_{-\pi}^{\pi}\Phi (t) \sin \left (n+\frac{1}{2} \right )t\,dt.$$ Получаем, что $\lim\limits_{n \to \infty }B_n(x_0)=0$, а это означает, что для выбранного ранее произвольного $\varepsilon > 0$ существует такое $N$, что для всех $n>N$ выполняется неравенство $|I_n(x_0)|\leq |A_n(x_0)| + |B_n(x_0)| < \varepsilon $, т.е. $$\lim\limits_{n \to \infty }I_n(x_0)=0.$$

Совершенно аналогично доказывается, что и второй интеграл формулы $(7)$ имеет равный нулю предел при $n \to \infty $.

[свернуть]

Следствие Если $2\pi$ периодическая функция $f(x)$ кусочно дифференциируема на $[-\pi,\pi]$, то ее ряд Фурье в любой точке $x \in [-\pi,\pi]$ сходится к числу $$\frac{f(x_0+0)+f(x_0-0)}{2}.$$

Пример 1

На отрезке $[-\pi,\pi]$ найти тригонометрический ряд Фурье функции $f(x)=\left\{\begin{matrix}
1, x \in (0,\pi),\\ -1, x \in (-\pi,0),
\\ 0, x=0.
\end{matrix}\right.$

Исследовать сходимость полученного ряда.

Продолжая периодически $f(x)$ на всю вещественную ось, получим функцию $\widetilde{f}(x)$, график которой изображен на рисунке.

ggggggggg

Так как функция $f(x)$ нечетна, то $$a_k=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)\cos kx dx =0;$$

$$b_k=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)\sin kx \, dx = $$ $$=\frac{2}{\pi}\int\limits_{0}^{\pi}f(x)\sin kx \, dx =$$ $$=-\frac{2}{\pi k}(1- \cos k\pi)$$

$$b_{2n}=0, b_{2n+1} = \frac{4}{\pi(2n+1)}.$$

Следовательно, $\tilde{f}(x)\sim \frac{4}{\pi}\sum_{n=0}^{\infty}\frac{\sin(2n+1)x}{2n+1}.$

Так как ${f}'(x)$ существует при $x\neq k \pi$, то $\tilde{f}(x)=\frac{4}{\pi}\sum_{n=0}^{\infty}\frac{\sin(2n+1)x}{2n+1}$, $x\neq k \pi$, $k \in \mathbb{Z}.$

В точках $x=k \pi$, $k \in \mathbb{Z}$, функция $\widetilde{f}(x)$ не определена, а сумма ряда Фурье равна нулю.

Полагая $x=\frac{\pi}{2}$, получаем равенство $1 — \frac{1}{3} + \frac{1}{5}- \ldots + \frac{(-1)^n}{2n+1}+ \ldots = \frac{\pi}{4}$.

[свернуть]

Пример 2

Найти ряд Фурье следующей $2\pi$-периодической и абсолютно интегрируемой на $[-\pi,\pi]$ функции:
$f(x)=-\ln |
\sin \frac{x}{2}|$, $x \neq 2k\pi$, $k \in \mathbb{Z}$, и исследовать на сходимость полученного ряда.

ttttttt

Так как ${f}'(x)$ существует при $ x \neq 2k \pi$, то ряд Фурье функции $f(x)$ будет сходиться во всех точках $ x \neq 2k \pi$ к значению функции. Очевидно, что $f(x)$ четная функция и поэтому ее разложение в ряд Фурье должно содержать косинусы. Найдем коэффициент $a_0$. Имеем $$\pi a_0 = -2 \int\limits_{0}^{\pi}\ln \sin \frac{x}{2}dx = $$ $$= -2 \int\limits_{0}^{\frac{\pi}{2}}\ln \sin \frac{x}{2}dx \,- \, 2\int\limits_{\frac{\pi}{2}}^{\pi}\ln \sin \frac{x}{2}dx =$$ $$= -2 \int\limits_{0}^{\frac{\pi}{2}}\ln \sin \frac{x}{2}dx \, — \, 2\int\limits_{0}^{\frac{\pi}{2}}\ln\cos \frac{x}{2}dx=$$ $$= -2 \int\limits_{0}^{\frac{\pi}{2}}\ln (\frac{1}{2}\sin x)dx =$$ $$= \pi \ln 2 \, — \, 2 \int\limits_{0}^{\frac{\pi}{2}}\ln \sin x dx =$$ $$= \pi \ln 2 \, — \, \int\limits_{0}^{\pi}\ln \sin \frac{t}{2}dt = \pi\ln 2 + \frac{\pi a_0}{2},$$ откуда $a_0= \pi \ln 2$.

Найдем теперь $a_n$ при $n \neq 0$. Имеем $$\pi a_n = -2 \int\limits_{0}^{\pi}\cos nx \ln \sin \frac{x}{2}dx = $$ $$ = \int\limits_{0}^{\pi} \frac{\sin(n+\frac{1}{2})x+\sin (n-\frac{1}{2})x}{2n \sin\frac{x}{2}}dx=$$ $$= \frac{1}{2n} \int\limits_{-\pi}^{\pi} \begin{bmatrix}
D_n(x)+D_{n-1}(x)\\ \end{bmatrix}dx.$$

Здесь $D_n(x)$- ядро Дирихле, определяемое формулой (2) и получаем, что $\pi a_n = \frac{\pi}{n}$ и, следовательно, $a_n = \frac{1}{n}$. Таким образом, $$-\ln |
\sin \frac{x}{2}| = \ln 2 + \sum_{n=1}^{\infty } \frac{\cos nx}{n}, x \neq 2k\pi, k \in \mathbb{Z}.$$

[свернуть]

Литература

Тест по материалу данной темы: