М641. Задача о шестиугольнике и пересекающем его круг.

Задача из журнала «Квант» М641(1980, выпуск №9)

Задача:

Дан правильный шестиугольник $ABCDEF$ с центром $O$. Точки $M$ и $N$ — середины сторон  $CD$ и $DE$. Прямые  $AM$ и $BN$ пересекаются в точке $L$.

Докажите, что:

а) треугольник $ABL$ и четырехугольник $DMLN$ имеют равные площади;

б) $\widehat{ALO}=\widehat{OLN}=60^\circ$;

в) $\widehat{OLD}=90^\circ$.

Решение:

Все утверждения задачи не трудно получить из одного наблюдения: при повороте на $60^\circ$ вокруг центра $O$ четырехугольник $AMCB$ отображается на четырехугольник $BNDC$.

Действительно, при повороте $R_O^{60^\circ}$ (против часовой стрелки) точка $A$ переходит в точку $B$, точка $B$ — в точку $C$, сторона $CD$ отображается в сторону $DE$, так что середина $M$ стороны $CD$ переходит в середину $N$ стороны $DE$ (смотри рисунок). Следовательно, четырехугольники $AMCB$ и $BNDC$ конгруэнтны, так что площади их равны. Вычитая из этих равных площадей площадь четырехугольника $BCML$, получим равные площади, то есть треугольник $ABL$ и четырехугольник $DMLN$ равновелики.

Так как при повороте $R_O^{60^\circ}$ луч $AM$ отображается на луч $BN$, угол между направлениями этих лучей равен углу поворота, то есть $\widehat{ALB}=60^\circ$. Следовательно, $\widehat{ALN}=120^\circ$.Приведем два доказательства того , что $\widehat{ALO}=\widehat{OLN}=60^\circ$ и $\widehat{OLD}=90^\circ$.

$1^\circ$. Воспользуемся таким очевидным фактом: если две прямые, пересекающиеся в точке $K$, равноудалены от точки $P$, то прямая $PK$ служит биссектрисой угла между этими прямыми (содержащего точку $P$). Поскольку точка $O$ равноудалена от прямых $AM$ и $BN$, $OL$ — биссектриса угла $ALN$, то есть $\widehat{ALO}=\widehat{OLN}=60^\circ$. Поскольку точка $D$ удалена от прямых $AM$ и $BN$ одинаково (на такое же расстояние, как $C$ — от прямой $AM$). $\widehat{NLD}=\widehat{DLM}=30^\circ$, то есть $\widehat{OLD}=90^\circ$.

$2^\circ$. Около четырехугольника $DMON$ можно описать окружность, так как углы  при его вершинах $M$ и $N$ — прямые. Тогда $L$ также принадлежит этой окружности. Это следует из того, что в четырехугольнике $DMLN$ сумма углов при вершинах $D$ и $L$ равна $180^\circ$. Заметив, что $\widehat{ODN}=60^\circ$, применим теорему о вписанном угле. Тогда получим $\widehat{OLN}=\widehat{ODN}=60^\circ$ и $\widehat{OLD}-\widehat{OMD}=90^\circ$.

Э.Готман

М1574. Задача о связи радиусов описанных окружностей соответствующих треугольников шестиугольника и его полупериметра

Задача из журнала «Квант» (1996 год, 6 выпуск)

Условие

В выпуклом шестиугольнике [latex]ABCDEF[/latex] [latex]AB||ED[/latex], [latex]BC||FE[/latex], [latex]CD||AF[/latex]. Пусть [latex]R_A[/latex], [latex]R_C[/latex], [latex]R_E[/latex] — радиусы окружностей, описанных около треугольников соответственно, а [latex]p[/latex] — полупериметр шестиугольника. Докажите, что:
$$R_A+R_C+R_E\geq p$$

Иллюстрация к задаче

hexagon

Решение

Первое решение

Пусть длины сторон [latex]AB[/latex], [latex]BC[/latex], [latex]CD[/latex], [latex]DE[/latex], [latex]EF[/latex] и [latex]FA[/latex] равны [latex]a[/latex], [latex]b[/latex], [latex]c[/latex], [latex]d[/latex], [latex]e[/latex] и [latex]f[/latex] соответственно. Построим [latex]AP\perp BC[/latex], [latex]AS\perp EF[/latex], [latex]DQ\perp BC[/latex] и [latex]DR\perp EF[/latex]. Тогда [latex]PQRS[/latex] — прямоугольник и [latex]BF\geq PS=QR[/latex]. Следовательно, [latex]2BF\geq PS+QR[/latex] и тогда [latex]2BF\geq (a\sin B+f\sin C)+(c\sin C+d\sin B)[/latex] (мы воспользовались тем, что [latex]\angle A=\angle D[/latex], [latex]\angle B=\angle E[/latex], [latex]\angle C=\angle F[/latex]).

Аналогично,
$$2DB\geq (c\sin A+b\sin B)+(e\sin B+f\sin A),$$
$$2FD\geq (e\sin C+d\sin A)+(a\sin A+b\sin C).$$

Запишем выражение для [latex]R_A[/latex], [latex]R_C[/latex], [latex]R_E[/latex]:
$R_A=\frac{BF}{2\sin A}$, $R_C=\frac{DB}{2\sin C}$ и $R_A=\frac{FD}{2\sin B}$.

Таким образом,
$$4(R_A+R_C+R_E)\geq$$ $$\geq a(\frac{\sin B}{\sin A}+\frac{\sin A}{\sin B})+b(\frac{\sin B}{\sin C}+\frac{\sin C}{\sin B})+…\geq$$ $$\geq 2(a+b+…)=4p$$
следовательно, [latex]R_A+R_C+R_E\geq p[/latex]. Равенство достигается тогда и только тогда, когда [latex]\angle A=\angle B=\angle C[/latex] и [latex]BF\perp BC[/latex], то есть в случае правильного шестиугольника.

Н. Седракян

Второе решение

Рассматриваемый шестиугольник [latex]ABCDEF[/latex] можно получить и некоего треугольника [latex]KLM[/latex], проведя прямые, параллельные сторонам этого треугольника.

Пусть [latex]KL=m[/latex], [latex]LM=k[/latex], [latex]MK=l[/latex], [latex]\angle LKM=\delta[/latex], высота к стороне [latex]LM[/latex] равна [latex]h[/latex], коэффициенты подобия (гомотетин) треугольников [latex]KCB[/latex], [latex]DLE[/latex] и [latex]AFM[/latex] по отношению к треугольнику [latex]KLM[/latex] равны соответственно [latex]x[/latex], [latex]y[/latex], [latex]z[/latex]. Понятно, что
$x+y\leq 1$, $y+z\leq 1$, $x+z\leq 1$ $(*)$
(мы допускаем ниже и случаи равенства). Если [latex]R[/latex] — радиус окружности, описанной около треугольника [latex]ABF[/latex],
$$R=\frac{BF}{2\sin\delta}\geq\frac{h(1-x)}{2\sin\delta}=\frac{S_KLM(1-x)}{2k\sin\delta}=\frac{lm}{k}(1-x).$$

Оценивая аналогично другие радиусы и выражая стороны шестиугольника через [latex]k[/latex], [latex]l[/latex], [latex]m[/latex], [latex]x[/latex], [latex]y[/latex], [latex]z[/latex], получим, что нам достаточно доказать неравенство
$$\frac{lm}{k}(1-x)+\frac{mk}{l}(1-y)+\frac{kl}{m}(1-z)\geq$$ $$\geq k(1+x-y-z)+l(1+z-x-y)+$$ $$+m(1+y-z-x).$$ $(**)$

Это неравенство линейно относительно . Но переменные неотрицательны и удовлетворяют еще условию $(*)$ (на самом деле они больше нуля и неравенства $(*)$ строгие, но мы несколько расширяем область их изменения). Областью изменения их является многогранник в координатном пространстве [latex](x; y; z)[/latex] с вершинами [latex](0; 0; 0)[/latex], [latex](1; 0; 0)[/latex], [latex](0; 1; 0)[/latex], [latex](0; 0; 1)[/latex], [latex](\frac{1}{2}; \frac{1}{2}; \frac{1}{2})[/latex]. Достаточно проверить, что неравенство $(**)$ выполняется в этих вершинах. Например, при [latex]x=y=z=\frac{1}{2}[/latex] и при [latex]x=y=z=0[/latex] получаем неравенство
$$\frac{lm}{k}+\frac{mk}{l}+\frac{kl}{m}\geq k+l+m;$$
оно легко доказывается сложением очевидных неравенств
$\frac{kl}{m}+\frac{mk}{l}\geq 2k$, $\frac{kl}{m}+\frac{lm}{k}\geq 2l$, $\frac{lm}{k}+\frac{mk}{l}\geq 2m$.
Для остальных трех вершин неравенство $(**)$ очевидно.

И. Шарыгин

Замечание

Для центрально-симметричных шестиугольников эта задача эквивалентна замечательному неравенству Эрдеша-Морделла: для любой точки [latex]M[/latex] внутри треугольника сумма расстояний от [latex]M[/latex] до вершин по крайней мере вдвое больше суммы расстояний от [latex]M[/latex] до сторон (опустите перпендикуляры [latex]MB[/latex], [latex]MD[/latex], [latex]MF[/latex] на стороны и постройте параллелограммы [latex]BMFA[/latex], [latex]DMBC[/latex], [latex]FMDE[/latex]; радиусы описанных окружностей треугольников [latex]BMF[/latex], [latex]DMB[/latex], [latex]FMD[/latex] равны [latex]R_A[/latex], [latex]R_C[/latex], [latex]R_E[/latex] в условии и равны расстояниям от точки [latex]M[/latex] до вершин треугольника).

M1161. Задача о 10 бильярдных шарах

Задача из журнала «Квант»(1989, №5)

Условие

В бильярдном треугольнике вплотную помещается $10$ шаров. Докажите, что если в нем поместить $9$ шаров, то обязательно останется место для десятого (т.е. центры $9$ шаров расположатся по треугольной сетке)
alina2

Решение

Примем диаметр шара за $1$. Задача эквивалентна следующей: доказать, что если $9$ точек $K_1, K_2, \cdots, K_9$, попарные расстояния между которыми не меньше $1$, размещены в правильном треугольнике со стороной $3$, то они обязательно находятся в вершинах треугольной решетки со стороной $1$ (в $9$ из $10$ черных точек на рисунке 2). Достаточно доказать, что $6$ (или $7$) из точек $K_i$ находяться в пределах красного шестиугольника, причем они обязательно находяться в его вершинах или в центре $O$ — ведь в каждом угловом треугольнике со стороной $1$ (не на красной стороне) может находится лишь одна из точек $K_i$, причем если на его красной стороне есть другая точка $K_j$, то $K_i$ лежит в вершине большого треугольника.

alina

Ясно, что если одна из $6$ точек $K_i$ внутри шестиугольника совпадает с $O$, то остальные лежат в вершинах. Если же все они отличны от $O$, то отрезки $OK_i$, проведенные в эти точки, образуют между собой углы $60^{\circ}$ (если $\angle K_i O K_j < 60^{\circ} $, $OK_i \leq 1$ , $OK_j \leq 1$, то $K_i K_j$ < 1 ) и $OK_i = 1$

По-видимому, верен и такой факт: если из $1+2+\cdots+n = \frac{n(n+1)}{2}$ шаров, вплотную уложенных в треугольную коробку, убрать один шар, то остальные обязательно будут распологаться по треугольной сетке — так что убранный шар можно уложить на место.

Н. П. Долбинин

М838. О разбиении точек, лежащих на сторонах треугольника, на множества

Задача из журнала “Квант” (1984, №3)

Условие

Все точки, лежащие на сторонах правильного треугольника $ABC$ разбиты на два множества $E_{1}$ и $E_{2}$. Верно ли, что для любого такого разбиения в одном из множеств $E_{1}$ и $E_{2}$ найдется тройка вершин прямоугольного треугольника?

рис. 1

Ответ

Верно.

Доказательство

Доказательство проведем от противного. Пусть точки множества $E_{1}$ окрашены синим цветом, множества $E_{2}$ – красным. Предположим, что не существует прямоугольного треугольника с одноцветными вершинами, и рассмотрим правильный шестиугольник, вписанный в треугольник $ABC$ (см. рисунок 1). Каждые две его противоположные вершины должны быть окрашены по-разному — если, например, противоположные вершины $P$ и $Q$ синие, то любая из остальных четырех вершин должна быть красной, так как образует вместе с $P$ и $Q$ прямоугольный треугольник: но тогда любые три из этих красных точек образуют запрещенный одноцветный прямоугольный треугольник.

рис. 2

Ясно, что в таком случае найдутся две соседние разноцветные вершины шестиугольника. Либо эти две вершины, либо противоположные им (тоже разноцветные!) лежат на одной из сторон треугольника. Пусть для определенности на стороне $AB$ лежат синяя вершина $К$ и красная $L$, тогда противоположные им вершины $K’$ и $L’$ будут красной и синей (см. рисунок 3). Но тогда в какой бы цвет ни была окрашена вершина $А$, один из
прямоугольных треугольников $AKL’$ и $ALK’$ будет одноцветным. Противоречие.

рис. 3

Это рассуждение показывает, что даже множество из восьми точек — вершин шестиугольника и любых двух вершин треугольника — нельзя разбить на подмножества без прямоугольных треугольников.

Н.Б. Васильев, В.Н. Дубровский

М1579. Нахождение площади шестиугольника

Задача из журнала «Квант» (1997, №3)

Условие

Пусть [latex] A’,B’,C’,D’,E’,F’ [/latex] — середины сторон [latex] AB, BC, CD, DE, EF, FA [/latex] произвольного выпуклого шестиугольника [latex] ABCDEF [/latex]. Известны площади треугольников [latex] ABC’, BCD’, CDE’, DEF’, EFA’, FAB’ [/latex]. Найдите площадь шестиугольника [latex] ABCDEF [/latex].
M1579(1)рис.1

Решение

Заметим, что $$S_{ABC’}=(S_{ABC} + S_{ABD}) / 2,$$ поскольку все эти три треугольника имеют общее основание [latex] AB [/latex] (рис.1) высота [latex] \Delta ABC’ [/latex] равна полусумме высот [latex] \Delta ABC [/latex] и [latex] \Delta ABD [/latex] , опущенных на [latex] AB [/latex]. M1579(2)рис.2

Сложив шесть равенств аналогичных (1), получим, что известная нам сумма [latex]S\prime [/latex] площадей треугольника [latex] ABC’, BCD’, CDE’, DEF’, EFA’, FAB’ [/latex] равна сумме [latex]{ (S }_{ 1 }+{ S }_{ 2 })/2[/latex], где [latex]S_{1}[/latex]- сумма площадей шести треугольников [latex] ABC, BCD, CDE, DEF, EFA, FAB [/latex], отрезаемых малыми диагоналями, а [latex]S_{2}[/latex] — сумма площадей треугольников [latex] ABC, BCD, CDE, DEF, EFA, FAB [/latex] полученных «циклическим сдвигом» вершин из [latex]\triangle ABS[/latex].С другой стороны разрезав шестиугольник так, как показано на рисунке 2, и еще двумя аналогичными способами, получающимися из этого разрезанная «циклическим сдвигом» (в том же направлении [latex]A\rightarrow B\rightarrow C\rightarrow …[/latex]) для площади [latex]S[/latex] шестиугольника получим равенство [latex]3S=S_{1}+S_{2}[/latex]. От сюда [latex]S=2S\prime /3[/latex].

Н.Васильев