Теорема Кронекера-Капелли. Критерий совместности системы линейных алгебраических уравнений. СЛАУ совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы. То есть, если в СЛАУ $r=\operatorname{rang}A=\operatorname{rang}\widetilde{A}$, где $\operatorname{rang}A$ — обозначает ранг матрицы системы, а $\operatorname{rang}\widetilde{A}$ — ранг расширенной матрицы, тогда данная матрица совместна, причём система имеет единственное решение, если $\operatorname{rang}A=\operatorname{rang}\widetilde{A}=n$, где $n$ — число неизвестных, и бесконечное число решений, если $\operatorname{rang}A=\operatorname{rang}\widetilde{A}<n$.
Необходимость. Пусть задана расширенная матрица $\widetilde{A}$:
$\widetilde{A}=\left\{\begin{matrix}
a_{11}x_{1} \; + \; a_{12}x_{2} \; + \; \cdots \; + \; a_{1n}x_{n} \; = \; b_{1}
\\a_{21}x_{1} \; + \; a_{22}x_{2} \; + \; \cdots \; + \; a_{2n}x_{n} \; = \; b_{2}
\\ \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots
\\a_{m1}x_{1} \; + \; a_{m2}x_{2} \; + \; \cdots \; + \; a_{mn}x_{n} \; = \; b_{m}
\end{matrix}\right.$
Скажем, что данная система совместна, в таком случае существуют числа $\left(c_{1},c_{2},\dots,c_{n}\right)$, которые являются частным решением матрицы, при подстановке их в систему. Мы получим равенство:
$\begin{Vmatrix} b_{1}\\ b_{2} \\ \vdots \\ b_{n}\\ \end{Vmatrix} =
c_{1}\begin{Vmatrix} a_{11}\\ a_{21} \\\vdots\\ a_{m1} \end{Vmatrix} +
c_{2}\begin{Vmatrix} a_{12}\\ a_{22} \\\vdots\\ a_{m2} \end{Vmatrix} + \dots+
c_{n}\begin{Vmatrix} a_{1n}\\ a_{2n} \\\vdots\\ a_{mn} \end{Vmatrix}
$
Следовательно, вектор-столбец свободных членов является линейной комбинацией столбцов $\left(a_{1},a_{2},\dots,a_{n}\right),$ матрицы $A.$ Так же, мы можем заметить, что сколько бы мы раз не приписали или не вычеркнули строку(столбец), от этого не меняется ранг системы, из этого следует, что $\operatorname{rang}A=\operatorname{rang}\widetilde{A}$.
Достаточность. Если $\operatorname{rang}A=\operatorname{rang}\widetilde{A}$, то это означает, что у них один и тот же базисный минор. Тогда, согласно теореме о базисном миноре, последний столбец свободных членов – линейная комбинация столбцов базисного минора.
Следствие:
- $\operatorname{rang}A=\operatorname{rang}\widetilde{A}=n$ единственное решение.
- $\operatorname{rang}A=\operatorname{rang}\widetilde{A}<n$ бесконечное число решений.
- Количество главных переменных равно рангу системы.
Примеры решения задач
Рассмотрим примеры задач, в которых используеться критерий совместности $\operatorname{rang}A=\operatorname{rang}\widetilde{A}.$
- $ \left\{\begin{matrix}
2x_{1} \; — \; x_{2} \; + \; 5x_{3} \; = \; 4
\\3x_{1} \; — \; x_{2} \; + \; 5x_{3} \; = \; 0
\\5x_{1} \; — \; 2x_{2} \; + \; 3x_{3} \; = \; 2
\end{matrix}\right.$Решение
Сначала, приведем матрицу к треугольному виду.
$\left(\begin{matrix} 2 & -1 & 5 & 4 \\ 3 & -1 & 5 & 0 \\ 5 & -2 & 3 & 2 \end{matrix} \right)\sim
\left(\begin{matrix} -1 & 2 & 5 & 4\\ -1 & 3 & 5 & 0 \\ -2 & 5 & 3 & 2 \end{matrix} \right)\sim$$\left(\begin{matrix} -1 & 1 & 5 & 4\\ 0 & 1 & 0 & -4 \\ 0 & 1 & -7 & -7 \end{matrix} \right)\sim
\left(\begin{matrix} -1 & 1 & 5 & 4\\ 0 & 1 & 0 & -4 \\ 0 & 0 & -7 & -3 \end{matrix} \right)$Элементарные преобразования не меняют ранга матриц, поэтому в результате выполненных действий, получены эквивалентные исходнной матрице системы $A=\left(\begin{matrix} -1 & 1 & 5 \\ 0 & 1 & 0 \\ 0 & 0 & -7\end{matrix}\right)$ и расширенная матрица системы $\widetilde{A}=\left(\begin{matrix} -1 & 1 & 5 & 4\\ 0 & 1 & 0 & -4 \\ 0 & 0 & -7 & -3 \end{matrix} \right)$
$\operatorname{rang}A=\operatorname{rang}\widetilde{A}=3$ значит, по теореме Кронекера-Капелли система совместна.
- $\left\{\begin{matrix}
x_{1} \; + \; x_{2} \; — \; x_{3} \; = \; 7
\\x_{1} \; + \; 2x_{2} \; — \; 3x_{3} \; = \; 1
\\-2x_{1} \; — \; 2x_{3} \; = \; 3
\end{matrix}\right.$Решение
Приведем матрицу к ступенчистому виду:
$\left(\begin{matrix} 1 & 1 & -1 & -4 \\ 1 & 2 & -3 & 0 \\ -2 & 0 & -2 & 3 \end{matrix} \right)\sim \left(\begin{matrix} 1 & 1 & -1 & -4 \\ 0 & 1 & -2 & 4 \\ 0 & 2 & -4 & -5 \end{matrix} \right)\sim \left(\begin{matrix} 1 & 1 & -1 & -4 \\ 0 & 1 & -2 & 4 \\ 0 & 0 & 0 & -13 \end{matrix} \right)$
$\Rightarrow \widetilde{A}=\left(\begin{matrix} 1 & 1 & -1 & -4 \\ 0 & 1 & -2 & 4 \\ 0 & 0 & 0 & -13 \end{matrix} \right)=\operatorname{rang}\widetilde{A}=3$
$\Rightarrow A=\left(\begin{matrix} 1 & 1 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{matrix} \right)=\operatorname{rang}A=2$
$\operatorname{rang}A\neq \operatorname{rang}\widetilde{A}$. По теореме Кронекера-Капелли система линейных уравнений несовместна.
- $\left\{\begin{matrix}
5x_{1} \; — \; 3x_{2} \; + \; 2x_{3} \; + \; 4x_{4} = \; 3
\\4x_{1} \; — \; 2x_{2} \; + \; 3x_{3} \; + \; 7x_{4} = \; 1
\\8x_{1} \; — \; 6x_{2} \; — \; x_{3} \; — \; 5x_{4} = \; 9
\\7x_{1} \; — \; 3x_{2} \; + \; 7x_{3} \; + \; 17x_{4} = \; \lambda
\end{matrix}\right.$Решение
Очевидно, что от значения $\lambda$ зависит, будет ли матрица совместна или нет.
Сначала приведем матрицу к треугольному ввиду:
$\widetilde{A}=\left(\begin{matrix} 5 & -3 & 2 & 4 & 3\\ 4 & -2 & 3 & 7 & 1\\ 8 & -6 & -1 & -5 & 9 \\ 7 & -3 & 7 & 17 & \lambda \end{matrix} \right)\sim
\left(\begin{matrix} 1 & -1 & -1 & -3 & 2\\ 4 & -2 & 3 & 7 & 1\\ 0 & -2 & -7 & -19 & 7 \\ 7 & -3 & 7 & 17 & \lambda \end{matrix} \right)\sim$$\left(\begin{matrix} 1 & -1 & -1 & -3 & 2\\ 0 & 2 & 7 & 19 & -7\\ 0 & -2 & -7 & -19 & 7 \\ 0 & 4 & 14 & 38 & \lambda — 14 \end{matrix} \right)\sim\left(\begin{matrix} 1 & -1 & -1 & -3 & 2\\ 0 & 2 & 7 & 19 & -7\\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \lambda \end{matrix} \right)$
При $\lambda\neq0$: $\operatorname{rang}\widetilde{A}=3$, $\operatorname{rang}A=2$. По теореме Кронекера-Капелли система линейных уравнений несовместна.
При $\lambda=0$: $\operatorname{rang}\widetilde{A}=2$, $\operatorname{rang}A=2$. По теореме Кронекера-Капелли система линейных уравнений совместна.
Критерий совместности СЛАУ Кронекера-Капелли
Тест на закрепление материала «Критерий совместности СЛАУ Кронекера-Капелли».
Литература
- Личный конспект, составленный на основе лекций Белозерова Г.С.
- Фадеев Д.К. Лекции по алгебре. М.: Наука, 1984.-416 с. стр 119.
- Проскуряков И.В. Сборник задач по линейной алгебре. М.: Наука, 1984.-384 с. стр 101-103.