Задача из журнала «Квант» (М1442)
Условие
Две окружности пересекаются в точках [latex]A[/latex] и [latex]B[/latex]. В точке [latex]A[/latex] к обеим проведены касательные, пересекающие окружности в точках [latex]M[/latex] и [latex]N[/latex]. Прямые [latex]BM[/latex] и [latex]BN[/latex] пересекают окружности еще раз в точках [latex]P[/latex] и [latex]Q[/latex]([latex]P[/latex] — на прямой [latex]BM[/latex], [latex]Q[/latex] — на прямой [latex]BN[/latex]). Докажите, что отрезки [latex]MP[/latex] и [latex]NQ[/latex] равны.
Решение
Легко доказать, что треугольники [latex]MAP[/latex] и [latex]QAN[/latex] подобны. Несколько труднее — что они равны. Но и это можно сделать, используя лишь теоремы о величине вписанного угла, о величине угла между касательной и хордой, а также о величине угла между касательной и секущей (он равен полуразности дуг, заключенных между сторонами угла, рис. 1).
Пусть величины дуг [latex]AB[/latex] двух кругов (заключенных внутри кругов) равны [latex]2\phi[/latex] и [latex]2\psi[/latex] (для дуг, лежащих внутри углов [latex]MAB[/latex] и [latex]NAB[/latex] соответственно). Легко видеть, что [latex]\angle BNA = \angle QNA = \phi[/latex], а также [latex]\angle MPA = \phi[/latex] — как в случае, когда точки [latex]P[/latex] и [latex]N[/latex] лежат по одну сторону от прямой [latex]AB[/latex] (рис. 2), так и в случае, когда по разные (рис. 3, где [latex]\angle BPA = \pi — \phi[/latex]). Аналогично, [latex]\angle BMA = \angle PMA = \psi = \angle NQA[/latex]. Отсюда следует подобие [latex]\triangle MAP\sim \triangle QAN[/latex].
Докажем, что [latex]AP = AN[/latex]. Проверим, что эти хорды стягивают разные дуги. Величина дуги [latex]ABN[/latex] (как и [latex]ABM[/latex]) равна [latex]2\phi + 2\psi[/latex], т. е. точки [latex]A[/latex] и [latex]N[/latex] делят окружности на дуги [latex]2\phi + 2\psi[/latex] и [latex]2\pi — 2\phi — 2\psi[/latex]. Дугу [latex]AP[/latex] можно найти рассмотрев угол [latex]\angle AMB = \phi[/latex] как угол между касательной и секущей : величина этой дуги, лежащей внутри угла, равна [latex]2\phi + 2\psi[/latex] на рисунке 2 и [latex]2\pi — 2\phi — 2\psi[/latex] на рисунке 3, т. е. точки [latex]A[/latex] и [latex]P[/latex] делят окружность на такие же дуги [latex]2\phi + 2\psi[/latex] и [latex]2\pi — 2\phi — 2\psi[/latex]. Аналогично, [latex]AQ = AM[/latex]. Отсюда следует, что [latex]\triangle MAP=\triangle QAN[/latex] и [latex]MP = QN[/latex].
И. Нагель