Ф1365. Задача о нахождение угла отклонения частицы

Задача из журнала «Квант» (1992 год, 8 выпуск)

Условие

Заряженная частица с кинетической энергией $W$ пролетает мимо длинного равномерно заряженного провода. Частица движется в плоскости, перпендикулярно проводу, и в результате отклоняется на небольшой угол $a$ от первоначального направления полета (смотреть рис.1). Найдите этот угол, если заряд частицы $e$, а заряд единицы длины провода $q$. На расстояние $R$ от длинного провода напряженность поля $E=\frac{q}{(2\pi\varepsilon_{0}R)}$.

рис.1

рис. 2

Решение

В произвольной точке $A$ на расстояние $R$ от заряженного провода скорость частицы направлена под малым углом $\alpha$ к оси $X$, таким, что $$\alpha =\frac{\upsilon_{y}}{\upsilon_{x} }.$$ Здесь $\upsilon_{y}$ — вертикальная проекция скорости, а $\upsilon_{x}= \sqrt{2 \frac{W}{m}}$ — ее горизонтальная проекция.
Запишем второй закон Ньютона в проекциях на ось $Y$ (рис.2):
$$F_{y}dt=md\upsilon_{y}$$ где $$F_{y}=eE\cos\psi=\frac{eq\cos\psi}{2\pi\varepsilon_{0}R} $$
Малый промежуток времени $dt$ выразим из соотношения $\nu_{x}=\frac{dx}{dt}$:$$dt= \frac{dx}{\nu_{x}}=\frac{Rd\psi} {\psi_{x}\cos\psi}$$

За это время вертикальная проекция скорости изменится на величину $$d\nu_{y}=\frac{F}{m}dt=\frac{eq}{2\pi m\nu}d\psi$$

Полная проекция скорости вдоль оси $Y$ складывается их приращений: $$\nu_{y}=\int_{ \frac{ \pi }{ 2 }}^{ \frac{- \pi}{2}}d\nu_{y} = \frac{eq}{2\varepsilon_{o}m\nu_{x}}$$

Итак, искомый угол $\alpha$ получается таким:$$\alpha=\frac{\nu_{y}}{\nu_{x}}=\frac{ eq }{2\varepsilon_{o}m\nu_{x}^{2}}=\frac{eq}{4\varepsilon_{o}W} $$

В. Можаев