Окружности [latex]S_1[/latex] и [latex]S_2[/latex] касаются внешним образом в точке [latex]F[/latex]. Прямая [latex]l[/latex] касается [latex]S_1[/latex] и [latex]S_2[/latex] в точках [latex]A[/latex] и [latex]B[/latex] соответственно. Прямая, параллельная прямой [latex]l[/latex], касается [latex]S_2[/latex] в точке [latex]C[/latex] и пересекает [latex]S_1[/latex] в точках [latex]D[/latex] и [latex]E[/latex]. Докажите, что а) точки [latex]A[/latex], [latex]F[/latex] и [latex]C[/latex] лежат на одной прямой; б) общая хорда окружностей, описанных около треугольников [latex]ABC[/latex] и [latex]BDE[/latex], проходит через точку [latex]F[/latex].
Решение а) Первое решение
Так как касательные к окружности [latex]S_2[/latex] в точках [latex]B[/latex] и [latex]C[/latex] параллельны, то [latex]BC[/latex] — ее диаметр, и ∠BFC=90°. Докажем, что и ∠AFB=90°. Проведем через точку [latex]F[/latex] общую касательную к окружностям, пусть она пересекает прямую [latex]l[/latex] в точке [latex]K[/latex]. Из равенства отрезков касательных, проведенных к окружности из одной точки, следует, что треугольники [latex]AKF[/latex] и [latex]BKF[/latex] равнобедренные. Следовательно, ∠AFB=∠AFK+∠KFB=∠FAB+∠FBA=180°/2=90°
Решение а) Второе решение
Рассмотрим гомотетию с центром [latex]F[/latex] и коэффициентом, равным [latex]-r_2/r_1[/latex], где [latex]r_1[/latex] и [latex]r_2[/latex] — радиусы окружностей [latex]S_1[/latex] и [latex]S_2[/latex]. При этой гомотении [latex]S_1[/latex] переходит в [latex]S_2[/latex], а прямая [latex]l[/latex] — касательная к [latex]S_1[/latex] — переходит в [latex]S_2[/latex]. Следовательно, точка [latex]A[/latex] переходит в точку [latex]C[/latex], поэтому точка [latex]F[/latex] лежит на отрезке [latex]AC[/latex].
Решение б)
Ниже мы покажем, что центр окружности [latex]BDE[/latex] находится в точке [latex]A[/latex]. Поскольку центр окружности [latex]ABC[/latex] есть середина [latex]AC[/latex] (∠ABC=90°), а ∠BFC=90° (см. первое решение п. а)), отсюда будет следовать, что [latex]BF[/latex] есть перпендикуляр, опущенный из общей точки окружностей [latex]BDE[/latex] и [latex]ABC[/latex] на прямую, соединяющею их центры. А это и значит, что прямая [latex]BF[/latex] содержит их общую хорду.
Итак, нам достаточно доказать, что [latex]AD=AE=AB[/latex]. Первое из этих равенств очевидно(ибо касательная к [latex]S_1[/latex] в точке [latex]A[/latex] параллельна [latex]DE[/latex]). Пусть [latex]r_1[/latex] и [latex]r_2[/latex] — радиусы [latex]S_1[/latex] и [latex]S_2[/latex]. Опуская перпендикуляр [latex]AP[/latex] на [latex]DE[/latex], найдем, что [latex]AP=BC=2r_2[/latex], и по теореме Пифагора для треугольников [latex]APD[/latex] и [latex]O_1PD[/latex], где [latex]O_1[/latex] — центр [latex]S_1[/latex] [latex]PD^2=O_1D^2-O_1P^2=r_1^2-(2r_2-r_1)^2=4r_1r_2-4r_2^2[/latex][latex]AD^2=AP^2+PD^2=4r_1r_2[/latex]
Но легко найти, что общая касательная [latex]AB[/latex] окружностей [latex]S_1[/latex] и [latex]S_2[/latex] равна [latex]2\sqrt{r_1r_2}[/latex].
Замечание 1. Пусть функция [latex]f(x)[/latex] бесконечно дифференцируема на интервале [latex](-l, l).[/latex] Если эта функция является четной, то её производная — нечетная функция, и, наоборот, производная нечетной функции — четная функция.
[latex]\triangle[/latex]Пусть [latex]f(x)[/latex] — четная функция, тогда:
[latex]f(-x)=f(x)[/latex], [latex]x\in(-a, a)[/latex].
Дифференцируя это тождество, получаем
[latex]-f'(-x)=f'(x),[/latex] [latex]x\in(-a, a)[/latex].
Это означает, что [latex]f'(x)[/latex] — нечетная функция. Аналогично рассматривается случай, когда [latex]f(x)[/latex] — нечетная функция.[latex]\blacktriangle [/latex]
Отсюда следует, что для нечетной функции [latex]f[/latex] выполняютcя условия [latex]f^{(2k)}(0)=0[/latex], [latex]k\in \mathbb{N}[/latex], а для четной функции [latex]f[/latex] — условия [latex]f^{(2k-1)}(0)=0[/latex], [latex]k\in \mathbb{N}[/latex], так как любая непрерывная нечетная функция принимает при [latex]x=0[/latex] значение нуль.
Поэтому формулу (1) для бесконечно дифференцируемой четной функции можно записать в виде:
а) Показательная функция. Если [latex]f(x)=e^x[/latex], то [latex]f(0)=1[/latex] и [latex]f^{(n)}(0)=1[/latex] при любом [latex]n[/latex]. Поэтому формула (1) для функции [latex]e^x[/latex] записывается в виде
б) Гиперболические функции. Так как [latex]f(x)=\sinh x[/latex] — нечетная функция, [latex]f^{(2k+1)}(x)=\cosh x[/latex], [latex]f^{(2k+1)}(0)=1[/latex] при [latex]k=0, 1, 2,\dots[/latex], то по формуле (3) получаем
Замечание 2. Так как [latex]\sinh x=\frac{e^x-e^{-x}}{2}[/latex], [latex]\cosh x=\frac{e^x+e^{-x}}{2}[/latex], то формулы (5) и (6) можно получить, используя равенство (4) и равенство [latex]e^{-x}=\sum\limits_{k=0}^n\frac{(-1)^kx^k}{k!}+\underset{x\to 0}{\circ(x^n)}[/latex].
в) Тригонометрические функции. Функция [latex]f(x)=\sin x[/latex] является нечетной,
Для 2 членов разложения: [latex]\sin x\approx x-\frac{x^3}{3!}[/latex]
Для 3 членов разложения: [latex]\sin x\approx x-\frac{x^3}{3!}+\frac{x^5}{5!}[/latex]
Для 4 членов разложения: [latex]\sin x\approx x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}[/latex]
Как видно по графику, для достижения точности, достаточной для решения большинства практических задач, можно ограничиться 4-5 членами ряда.
г) Степенная функция. Пусть [latex]f(x)=(1+x)^\alpha[/latex], где [latex]\alpha \in \mathbb{R}[/latex]. Тогда [latex]f^{(k)}(x)=\alpha(\alpha-1)\dots(\alpha-(k-1))(1+x)^{\alpha-k}[/latex], откуда получаем [latex]f^{(k)}(0)=\alpha(\alpha-1)\dots(\alpha-(k-1))[/latex]. Тогда по формуле (1) получим
д) Логарифмическая функция. Если [latex]f(x)=\ln(1+x)[/latex], то [latex]f(0)=0[/latex], [latex]f^{(k)}(x)=\frac{(-1)^{k-1}(k-1)!}{(1+x)^k}[/latex], [latex]f^{(k)}(0)=(-1)^{k-1}(k-1)![/latex], и по формуле (1) находим
Разложить по формуле Тейлора в окрестности точки [latex]x_0=0[/latex] до [latex]\circ(x^n)[/latex] функцию [latex]f(x)[/latex], если [latex]f(x)=\frac{1}{\sqrt{1+x}}:[/latex]
Спойлер
[latex]f(x)=\frac{1}{\sqrt{1+x}}=(1+x)^{-\frac{1}{2}}[/latex]. Применяя формулу (9) при [latex]\alpha=-\frac{1}{2}[/latex], получаем:
Разложить по формуле Тейлора в окрестности точки [latex]x_0=0[/latex] до [latex]\circ(x^n)[/latex] функцию [latex]f(x)[/latex], если [latex]f(x)=\ln\frac{x-5}{x-4}:[/latex]