9.2.1 Открытые множества

Определение. Открытым шаром с центром в точке $x_0$ и радиусом $\rho >0$ называется множество всех точек $x\in \mathbb{R}^n,$ таких, что $|x-x_0|<\rho.$ Этот шар обозначается $B(x_0,\rho)$ и называется также $\rho$-окрестностью точки $x_0.$

Определение. Пусть задано множество $E \subset \mathbb{R}^n.$ Точка $x_0 \in E$ называется внутренней точкой множества $E,$ если существует шар $B(x_0,\rho),$ содержащийся в $E.$ Другими словами, точка $x_0$ называется внутренней точкой множества $E,$ если она входит во множество $E$ вместе с некоторой окрестностью.

Определение. Множество $E$ называется открытым, если все его точки являются внутренними точками этого множества. Условимся также считать пустое множество $\emptyset$ открытым.

Пример 1. Каждый открытый шар $B(x_0,r)$ является открытым множеством.

Действительно, пусть $x \in B(x_0,r).$ Нужно доказать, что существует такая окрестность точки $x,$ которая целиком содержится в шаре $B(x_0,r).$ Положим $\rho = r-|x-x_0|.$ Тогда $\rho > 0,$ так как $|x-x_0|<r.$ Покажем, что $B(x,\rho) \subset B(x_0,r).$ Пусть $y \in B(x,Ѕ).$ Тогда $|y-x|<\rho.$ Оценим расстояние между точками $y$ и $x_0.$ По неравенству треугольника имеем $$|y-x_0|\leqslant|y-x|+|x-x_0|<\rho + |x-x_0|=r$$ что и требовалось доказать.

В частности, при $n = 1$ открытые шары — это интервалы на действительной прямой, и они являются открытыми множествами на прямой.

Пример 2. Рассмотрим открытые $n$-мерные интервалы. Для двух заданных векторов $a,b \in \mathbb{R}^n,$ таких, что $a^i < b^i (i=1,…,n),$ открытым интервалом называется множество всех точек $x,$ координаты которых удовлетворяют условиям $a^i < x^i < b^i (i=1,…,n).$ Такой интервал обозначается через $(a^1,b^1,…,a^n,b^n).$

В частности, в $\mathbb{R}^2$ открытые интервалы — это прямоугольники со сторонами, параллельными координатным осям, а в $\mathbb{R}^3$ — параллелепипеды, ребра которых параллельны координатным осям.

Докажем, что любой открытый интервал в $\mathbb{R}^n$ является открытым множеством.

Пусть $J$ — открытый интервал и пусть $x \in J,$ т. е. $a^i < x^i < b^i (i=1,…,n).$ Обозначим через $\delta^i = min(x^i — a^i,b^i-x^i)(i=1,…,n)$ и $\delta=min(\delta^1,…,\delta^n).$ Покажем, что шар $B(x,\delta)$ содержится в $J.$ Действительно, если $y \in B(x,\delta),$ то $|y-x|<\delta.$ Отсюда следует, что $|x^i-y^i|<\delta$ для всех $i=1,…,n.$ Пользуясь определением числа $\delta,$ видим, что $a^i < y^i < b^i$ для всех $i=1,…,n,$ так что $y \in J,$ что и требовалось доказать.

Пример 3. Множество $S$ всех точек на действительной прямой — открытое.

Рассмотрим некую точку $x,$ которая находится на расстоянии $\rho$ от точки $x_0 = (0),$ затем рассмотрим шар $B(x,\eps).$ Каждая точка, принадлежащая этому шару, также, очевидно, принадлежит всей действительной прямой, т.е. $\forall y \in B(x,\eps): y \in S,$ что означает что любая точка входит в множество $S$ вместе с некоторым шаром, а по определению это значит, что $S$ — открытое множество

Свойства открытых множеств.

Пусть $\mathcal{A}$ — множество индексов, и каждому элементу $\alpha \in \mathcal{A}$ поставлено в соответствие некоторое множество $E_{\alpha}.$ Тогда говорят, что задано семейство множеств $\{E_{\alpha}\}_{\alpha \in \mathcal{A}}.$

Теорема. Система всех открытых множеств в $\mathbb{R}^n$ обладает следующими свойствами:

  1. все пространство $\mathbb{R}^n$ и пустое множество $\emptyset$ открыты;
  2. пересечение любого конечного числа открытых множеств открыто;
  3. объединение любого семейства $\{G_{\alpha}\}_{\alpha \in \mathcal{A}}$ открытых множеств открыто.
  1. Пустое множество $\emptyset$ открыто по определению, а всё пространство $\mathbb{R}^n,$ очевидно, открыто, поскольку любой шар содержится в $\mathbb{R}^n.$
  2. Пусть $G_1,…,G_s$ — открытые множества, $G = \bigcap\limits_{i=1}^s G_i.$ Пусть $x \in G.$ Тогда $x \in G_i$ для всех $i=1,…,s.$ Но каждое из множеств $G_i$ открыто, так что для каждого $i=1,…,s$ найдется шар $B(x,r_i) \subset G_i.$ Среди всех этих шаров выберем шар с наименьшим радиусом $B(x,r),$ где $r = min(r_1,…,r_s).$ Тогда $B(x, r) \subset G_i$ при каждом $i=1,…,s,$ а значит, $B(x,r) \subset G,$ и тем самым доказано, что множество $G$ открыто.
  3. Пусть $G = \bigcup\limits_{\alpha \in \mathcal{A}} G_{\alpha},$ где каждое множество $G_{\alpha}$ открыто. Докажем, что и множество $G$ также открыто. Действительно, пусть $x \in G.$ Тогда $x$ принадлежит по крайней мере одному из множеств $G_{\alpha_0}.$ Так как это множество $G_{\alpha_0}$ открыто, то найдется окрестность $B(x,\rho) \subset G_{\alpha_0} \subset G.$ Таким образом, $G$ — открытое множество.

Замечание. Пересечение бесконечного набора открытых множеств не обязано быть открытым множеством. Например, пусть $B_k$ — открытый шар с центром в нуле и радиусом $\frac{1}{k} (k = 1,2,…).$ Тогда $\bigcap\limits^{\infty}_{k=1} B_k = \{0\}.$ Но множество $\{0\},$ состоящее из одной точки, не является открытым, поскольку оно не содержит в себе ни одного шара.

Определение. Пусть $E$ — непустое множество в $\mathbb{R}^n.$ Тогда совокупность всех его внутренних точек называется внутренностью множества $E$ и обозначается через $\mathring{E}$ или $\text{int} E.$

Теорема. Для любого непустого множества $E$ его внутренность — открытое множество.

Будем предполагать, что $\mathring{E}$ не пусто. Пусть $x \in \mathring{E}.$ Тогда $x$ — внутренняя точка множества $E$ (по определению внутренности). Нужно доказать, что $x$ является также внутренней точкой множества $\mathring{E}.$ Итак, найдется шар $B(x,\rho) \subset E.$ Но поскольку шар — открытое множество, то каждая точка $y \in B(x,\rho)$ содержится в этом шаре вместе с некоторой окрестностью $U_y.$ Значит $U_y \subset E,$ и поэтому $y$ — внутренняя точка множества $E,$ т.е. $y \in \mathring{E}.$ Таким образом, мы получили, что $B(x,\rho) \subset \mathring{E},$ а это означает, что $\mathring{E}$ — открытое множество, и теорема доказана.

Пример 4. Рассмотрим область определения функции $f(x) = \frac{1}{x}.$ $D(f) = (-\infty;0)\cup(0;\infty),$ значит $D(f)$ можно представить в виде объединения двух интервалов $D(f) = A_1 \cup A_2,$ где $A_1 = (-\infty;0); A_2 = (0;\infty),$ то есть в виде объединения двух открытых множеств, так как интервалы — открытые множества по доказанному ранее. А значит, по свойству открытых множеств, множество $D(f)$ — открытое множество.

Пример 5. Рассмотрим область определения функции $f(x) = \sqrt{3x}.$ $D(f)=\{x \in \mathbb{R} | x \geqslant 0\}.$ Это множество не является открытым, докажем это. Рассмотрим точку $x=0.$ $x \in D(f),$ однако не существует такого открытого шара $B(x,\rho),$ который полностью бы лежал в $D(f),$ так как в этом шаре будет присутствовать точка $y,$ такая что $x-\rho < y < x = 0.$ Из этого следует, что $y < 0$ и $y$ не принадлежит $D(f).$ Значит $D(f)$ не является открытым множеством.

9.2.1. Открытые множества

Для закрепления материала предложен тест по теме «Открытые множества».

М655. О чиновниках и циклах

Задача из журнала «Квант». Выпуск №11 1980 года.

М655. На столе у чиновника Министерства околичностей лежит $n$ томов Британской энциклопедии, сложенных в несколько стопок. Каждый день, придя на работу, чиновник берет из каждой стопке по одному тому и складывает взятые тома в новую стопку, затем располагает стопки по количеству томов (в невозрастающем порядке) и заполняет ведомость, в которой указывает количество томов в каждой стопке. Кроме сказанного выше, чиновник никогда ничего не делает.

а) Какая запись будет сделана в ведомости через месяц, если общее кол-во томов $n = 3, n = 6, n = 10$ (начальное расположение произвольно)

б) Докажите, что если общее число томов $n=\frac{1}{2} k (k+1),$ где $k$ — натуральное, то, начиная с некоторого дня, ведомость будет заполняться одинаковыми записями.

в) Исследуйте, что будет через много дней работы при других значениях $n.$

Решение

При $n = 3$ возможны всего три расположения:
$(1, 1, 1)$ — три стопка по одному тому;
$(3)$ — одна стопка из трех томов;
$(2, 1)$ — одна стопка из двух томов и одна стопка из одного тома.

рис. 1

Стрелки на рисунке 1 показывают, во что каждое расположение переходит на следующий день. Из рисунка видно, что, с чего бы мы не начали, не позже, чем через два дня (что записано как $T = 2$), возникает расположение $(2, 1),$ и затем оно будет повторяться. На рисунке 2 показан аналогичный граф для $n = 6.$ Число $m$ возможных расположений здесь равно $11.$ Не позже, чем через $T = 6$ дней после начала работы возникнет расположение $(3, 2, 1),$ и затем оно будет повторяться. Аналогичный граф для $n=10$ имеет $m=42$ вершины, и не позже, чем через $T=12$ дней после начала возникнет расположение $(4, 3, 2, 1),$ и затем оно будет повторяться.

рис. 2

Разумеется, далеко не каждый ориентированный граф из каждой вершины которого выходят одна стрелка, обладает единственной «конечной» вершиной, то есть не всегда, идя по его стрелкам, мы придем в одну и ту же вершину и там останемся (рис. 3). Граф может распадаться на отдельные части, не связанные между собой ни одной стрелкой, может содержать циклы. Поэтому тот факт, что при $n=\frac{1}{2} k (k+1),$ начиная с некоторого дня, получается одно и то же расположение совсем не очевиден, и мы сейчас его докажем. Рассмотрим сразу произвольное $n.$

рис. 3

Вообразим четверть бесконечного листа бумаги в клетку (рис. 4), клетки которого пронумерованы парами натуральных чисел слева направо и снизу вверх: клетка с номером $(x, y)$ стоит в столбце $x$ и в строке $y.$ Изготовим $n$ фишек и разместим их в клетках нашей бумаги следующим образом: в первом столбце столько фишек, сколько томов в первой стопке, во втором столько, сколько томов во второй стопке и т.д. Размещение фишек на рисунке 4 соответствует расположению $(8, 3, 3, 1, 1, 1).$ Преобразование, которое каждый день выполняет чиновник, можно представить в виде трах операций:

  1. Уберем фишки, находящиеся в самой нижней строке.
  2. Передвинем оставшиеся фишки на одну клетку вниз и на одну клетку вправо.
  3. Теперь выложим на бумагу убранные фишки, но не на нижнюю строку, а на самый левый столбец (освободившийся).
рис. 4

В результате этих операций рисунок 4 перейдет в рисунок 5. Правда, результат действия наших трех операций отличается от того, что делает чиновник, тем, что в конце дня чиновник еще упорядочивает стопки по убыванию, но мы пока что не будем делать таких преобразований.

При нашей последовательности операций фишка $(x, y)$ перейдет в клетку $(1, x),$ если $y = 1,$ или $(x+1,y-1),$ если $y>1.$

рис. 5

Назовем $i$-й диагональю совокупность тех клеток $(x, y),$ для которых $x+y=i+1.$ Под действие нашего преобразования фишки, находящиеся на $i$-й диагонали, не сойдут с нее, а будут перемещаться по правилу: $$(1, i)\longrightarrow(2, i-1)\longrightarrow(3, i-2)\longrightarrow…\longrightarrow(i, 1)\longrightarrow(1, i)$$

Теперь дополним преобразование, тем, что в каждой строке, где это возможно, сдвинем все фишки на одно место влево, тем самым упорядочим стопки как надо. Теперь все наше преобразование точно соответствует тому, что делает чиновник. Сдвиг влево означает, что для некоторых фишек величина $x+y$ может уменьшаться, но она по-прежнему не может увеличиваться. Но эта величина — натуральное число, значит она не может уменьшаться бесконечное количество раз. Наступит такой момент, что для всех фишек величина $x+y$ уже не будет уменьшаться. Таким образом каждая фишка займет свою диагональ. Докажем, что тогда для всякого $i$ будет выполняться следующее условие: если $i$-я диагональ не полностью заполнена фишками, то в $(i+1)$-й диагонали нет ни одной фишки.

Докажем от противного: пусть в $i$-й диагонали есть пустая клетка, а в $(i+1)$-й диагонали есть хоть одна фишка. Фишки на $i$-й диагонали (если они есть) передвигаются, попадая через каждые $i$ шагов на прежние места. фишка на $(i+1)$-й диагонали передвигается, попадая через каждые $(i+1)$ шагов на прежнее место. Посмотрим, что происходит в моменты $0, (i+1), 2(i+1), 3(i+1),…,i(i+1).$ Фишка на $(i+1)$-й диагонали в эти моменты оказывается там же, где и была в нулевой момент. Пустое место на $i$-й диагонали как бы двигается вместе с фишками, значит оно побывает на всех клетках $i$-й диагонали, а значит побывает слева от фишки на $(i+1)$-й диагонали. Но тогда эта фишка должна сдвинуться влево, что невозможно, так как мы предположили, что такие перемещения уже закончились.

Что же это за расположение фишек, при котором за неполной диагональю может идти только пустая? Если $n=\frac{1}{2} k (k+1)$, то такое расположение, очевидно, только одно: все диагонали от 1-й до $k$-й заполнены фишками, а все остальные — пустые. Это доказывает утверждение б), так как все фишки не покидают своих диагоналей, и не сдвигаются влево с какого-то момента.

Пусть теперь $n\neq\frac{1}{2} k (k+1)$. Тогда существует такое $k,$ что $$\frac{1}{2} k (k+1)<n<\frac{1}{2} (k+1) (k+2).$$

Положим $r=n-\frac{1}{2} k (k+1).$ В этом случае расположение фишек, при котором за неполной диагональю следуют пустые такое: все диагонали от 1-й до $k$-й заполнены фишками, на $(k+1)$-й диагонали находится $r$ фишек, а следующие диагонали пусты. Фишки, находящиеся на $(k+1)$-й диагонали перемещаются по ней, попадая через каждые $(k+1)$ шагов на свои прежние места. Это ответ на вопрос в).