M447. Задача об остроугольном треугольнике

Задача из журнала «Квант»(1977, №6)

Условие

В остроугольном треугольнике $ABC$ отрезки $BO$ и $CO$ (где $O$ — центр описанной окружности) продолжены до пересечения в точках $D$ и $E$ со сторонами $AC$ и $BC$ треугольника. Оказалось, что $\widehat{BDE}=50^{\circ}$, а $\widehat{CED}=30^{\circ}$. Найдите величины углов треугольника $ABC$ и докажите равенства $\left | AE \right |=\left | ED \right |$, $\left | CE \right |=\left | CB \right |$, $\left | CD \right |=\left | CO \right |$.

Решение

Величина угла $A$ находится легко (см. рис. 1): поскольку $\widehat{BOC}=\widehat{EOD}=180^{\circ}-30^{\circ}-50^{\circ}=100^{\circ}$, величина вписанного угла $A=50^{\circ}$. Заметим также, что $\widehat{OBC}=\widehat{OCB}=40^{\circ}$ (поскольку $\left | BO \right |=\left | CO \right |$).

Рис. 1

Рис. 1

Найти величины других углов треугольника $ABC$ можно с помощью теоремы синусов. Положим $\widehat{EBD}=\varphi $. Тогда $\widehat{OEB}=100^{\circ}-\varphi $, $\widehat{ABC}=\varphi +40^{\circ}$, $\widehat{ACB}=90^{\circ}-\varphi $, $\widehat{OCD}=50^{\circ}-\varphi $, $\widehat{ODC}=\varphi +50^{\circ}$; таким образом, $0^{\circ}< \varphi < 50^{\circ}$. Из треугольников $ODE, OBE$ и $OCD$ находим: $$\frac{\sin 50^{\circ}}{\sin 30^{\circ}}=\frac{\left | OE \right |}{\left | OD \right |}=\frac{\left | OE \right |}{\left | OB \right |}\cdot \frac{\left | OE \right |}{\left | OD \right |}=$$ $$=\frac{\sin \widehat{OBE}}{\sin \widehat{OEB}}\cdot \frac{\sin \widehat{ODC}}{\sin \widehat{OCD}}=\frac{\sin \varphi \sin \left ( \varphi +50^{\circ} \right )}{\sin \left ( 100^{\circ} -\varphi \right )\sin \left ( 50^{\circ}-\varphi \right )} .$$ Уравнение, из которого мы должны найти $\varphi \left ( 0^{\circ} < \varphi < 50^{\circ}\right )$: $$\frac{\sin \varphi \sin \left ( \varphi +50^{\circ} \right )}{\sin \left ( 100^{\circ} -\varphi \right )\sin \left ( 50^{\circ}-\varphi \right )} = 2\sin 50^{\circ},$$ эквивалентно следующим: $$2\sin 50^{\circ}\left ( \cos 50^{\circ} -\cos \left ( 150^{\circ} -2\varphi \right ) \right ) =\cos 50^{\circ}-\cos \left ( 50^{\circ}+2\varphi \right ),$$ $$\sin 20^{\circ}-\sin\left ( 2\varphi -40^{\circ} \right )+2\sin 50^{\circ}\cos \left ( 2\varphi +30^{\circ} \right )=0,$$ $$\cos \left ( \varphi -10^{\circ} \right )\sin \left ( 30^{\circ}-\varphi \right )+\sin 50^{\circ}\sin \left ( 60^{\circ}-2\varphi \right )=0,$$ $$\sin\left ( 30^{\circ} -\varphi \right )\left ( \cos \left ( \varphi -10^{\circ} \right )+2\sin 50^{\circ}\cos \left ( 30^{\circ}-\varphi \right ) \right )=0.$$ Поскольку $\cos \left ( \varphi -10^{\circ} \right )$ и $\cos \left ( \varphi -30^{\circ} \right )$ положительны при $0^{\circ}< \varphi < 50^{\circ}$, последнее уравнение имеет единственный корень $\varphi =30^{\circ}$.

Отсюда $\widehat{ABC}=70^{\circ}$, $\widehat{ACB}=60^{\circ}$/

Далее, $\widehat{BEC}=70^{\circ}\Rightarrow \left | CE \right |=\left | CB \right |;$ $$\widehat{ODC}=80^{\circ}\Rightarrow \left | CD \right |=\left | CO \right |;~\widehat{ADE}=50^{\circ}\Rightarrow \left | EA \right |=\left | ED \right |.$$

Равенства длин, которые требуется установить в задаче, подсказывают, какие углы должен иметь треугольник $ABC$. Но даже зная ответ, придумать данное выше тригонометрическое решение трудно. Вместо этого можно рассуждать иначе.

Рис. 2

Рис. 2

Заметим прежде всего, что условия $\widehat{OED}=30^{\circ}, \widehat{ODE}=50^{\circ}$ определяют ответ однозначно. Действительно (рис. 2), если на окружности с центром $O$ закрепить точки $B$ и $C$ так, что $\widehat{BOC}=100^{\circ}$, и перемещать точку $A$ по дуге ${B}'{C}’$ (симметричной дуге $BC$) от точки ${B}’$ к точке ${C}’$, то точка $D\in \left [ {B}’O \right ]$ будет приближаться к $O$, а $E\in \left [ O{C}’\right ]$ — удаляться от $O$; при этом величина угла $\widehat{ODE}$ будет возрастать, а угла $\widehat{OED}$ — убывать; значит, только при одном положении $A$ эти величины могут принять нужные значения ($50^{\circ}$ и $30^{\circ}$).

Рис. 3

Рис. 3

Теперь нужно лишь доказать, что треугольник с углами $\widehat{A}=50^{\circ}$, $\widehat{B}=70^{\circ}$, $\widehat{C}=60^{\circ}$ удовлетворяют условию, то есть что все углы — такие, как указано на рисунке 3:

  1. Достаточно проверить, что $DE$ — биссектриса угла $ADB$: $$\frac{\left | AE \right |}{\left | EB \right |}=\frac{\left | AE \right |}{\left | EC \right |}=\frac{\left | EC \right |}{\left | EB \right |}=\frac{\sin 20^{\circ}\sin 70^{\circ}}{\sin 50^{\circ}\sin 40^{\circ}}=$$ $$\frac{2\sin 20^{\circ}\cos 20^{\circ}}{2\sin 50^{\circ}\sin 40^{\circ}}=\frac{\sin 30^{\circ}}{\sin 50^{\circ}}=\frac{\left | AD \right |}{\left | DB \right |}.$$
    Здесь мы снова используем теорему синусов. А вот чисто геометрическое доказательство.
  2. Рис. 4

    Рис. 4

  3. Треугольник $ECB$ имеет ось симметрии, поскольку $\widehat{CEB}=\widehat{CBE}$. Пусть $K$ — точка, симметричная точке $O$ относительно этой оси (рис. 4). Тогда треугольник $KCD$ равносторонний ($\left | KC \right |=\left | OC \right |=\left | DC \right |=a,~\widehat{KCD}=60^{\circ}$), и потому $\left | KD \right |=a,~\widehat{DKC}=\widehat{KDC}=60^{\circ}$, а $\bigtriangleup KBE\cong \bigtriangleup OEB$, и потому $
    \widehat{BEK}=30^{\circ},~\widehat{EKB}=80^{\circ},~\left | EK \right |=\left | OB \right |=a$. Итак, треугольник $EKD$ равнобедренный, $\widehat{EKD}=40^{\circ}$, поэтому $\widehat{KED}=\widehat{KDE}=70^{\circ},$ $\widehat{ODE}=70^{\circ}- \widehat{ODK}=70^{\circ}-\left ( 80^{\circ} -60^{\circ}\right )=50^{\circ},$ $\widehat{OED}=70^{\circ}-40^{\circ}=30^{\circ}.$

Н. Васильев,
Я. Суконник

M927. Замена пересекающихся отрезков

Задача из журнала «Квант» (1985, №10)

Условие

На плоскости дано конечное множество точек, никакие три из которых не лежат на одной прямой. Проведено несколько отрезков с концами в данных точках. Эти отрезки разрешается менять: если какие-то два из них, [latex]AC[/latex] и [latex]BD[/latex], пересекаются, их можно стереть и провести

  1. отрезки [latex]AB[/latex] и [latex]CD[/latex]
  2. [latex]AB[/latex] и [latex]BC[/latex].

(Если «новый» отрезок уже проведён, проводить его второй раз не нужно.)
Можно ли после нескольких таких замен (только по правилу 1 или по правилу 2, но не по обоим) вернуться к исходному набору отрезков?

Решение

  1. Докажем, что через конечное число операций «типа 1» — замены пересекающихся [latex]AB[/latex] и [latex]CD[/latex] — мы придём к конфигурации, в которой уже не будет пересекающихся отрезков.

    Рассмотрим сумму [latex]s[/latex] длин всех отрезков конфигурации. При каждой операции «типа 1» она уменьшается:
    [latex]AB + CD < AC + BD[/latex] (*)
    (для треугольников [latex]APB[/latex] и [latex]CPD[/latex], где [latex]P[/latex] — точка пересечения [latex]AC[/latex] и [latex]BD[/latex] — рис. 1, выполнены неравенства [latex]AB < AP + PB[/latex] и [latex]CD < CP + PD[/latex]; сложив их, получим (*)).

    рисунок2

    С другой стороны, величина [latex]s[/latex] может принимать лишь конечное число различных значений, поскольку существует лишь конечное число различных конфигураций из отрезков с вершинами в данных точках. Поэтому через конечное число шагов мы придём к конфигурации, с которой уже нельзя проделать операцию, уменьшающую [latex]s[/latex].

    Это решение даёт очень грубую верхнюю оценку для максимального количества [latex]T_n[/latex] операций, которое может быть проделано с конфигурацией на [latex]n[/latex] точках — можно сказать лишь что оно меньше числа всех конфигураций, то есть [latex]2^{n\cdot(n-1)/2}[/latex], [latex]n\cdot(n-1)/2[/latex] — это число различных отрезков с концами в данных [latex]n[/latex] точках.

    рис1

    Приведём идею другого решения, дающего значительно лучшую оценку. Рассмотрим произвольное разбиение [latex]f[/latex] данных точек на два непустых множества, каждое из которых лежит целиком по одну сторону от некоторой прямой [latex]l[/latex]. Таких прямых для данного разбиения, конечно, бесконечно много, но одну из них всегда можно получить, повернув по часовой стрелке прямую, соединяющую две какие-либо точки [latex]A[/latex] и [latex]B[/latex] на очень маленький угол вокруг середины отрезка [latex]AB[/latex] (рис. 2); эту прямую обозначим [latex]l_i[/latex]. Число прямых [latex]l_i[/latex], и значит, что число рассматриваемых «выпуклых» разбиений не превосходит числа пар точек [latex]n\cdot(n-1)/2[/latex].

    Назовём балансом конфигурации суммарное число [latex]b[/latex] пересечений её отрезков со всеми прямыми [latex]l_i[/latex]; ясно, что [latex]0 \le b \le (n\cdot(n-1)/2)^2[/latex]. При операции типа 1 число пересечений любой прямой [latex]l_i[/latex] с отрезками конфигурации не увеличивается, а по крайней мере для одной прямой оно уменьшается на 2. Следовательно, [latex]T_n \le n^2 \cdot (n-1)^2 / 8[/latex]. Интересно было бы получить ещё более точную оценку для [latex]T_n[/latex].

  2. рисунок1Приведём пример, показывающий, что для операции «типа 2» — замены пересекающихся отрезков [latex]AC[/latex] и [latex]BD[/latex] не имеющих общий конец [latex]AB[/latex] и [latex]BC[/latex] — процесс может «зациклиться» и тем самым продолжаться неограниченно. Расположим 18 точек в вершинах правильного 18-угольника и обозначим через [latex]D(k, l)[/latex] конфигурацию из 36 отрезков, в которой каждая из 18 точек соединена [latex]k[/latex]-й и [latex]l[/latex]-й от неё по счёту.

    Чтобы пройти за 54 операции путь [latex]D(4, 8) \to D(5, 9) \to D(6, 7) \to D(4, 8)[/latex] (рис. 3), достаточно каждую из операций, изображенных на рисунке 4, проделать по 18 раз (поворачивая картинку каждый раз на [latex]20^{\circ}[/latex]).

    По-видимому, существуют и примеры с существенно меньшим числом точек [latex]n[/latex] и длинной цикла [latex]T[/latex], чем [latex]n = 18[/latex] и [latex]T = 54[/latex].

  3. рисунок4

    Н.Б. Васильев, В.Е. Колосов

M1626. О сумме длин отрезков в треугольнике, вписанном в окружность

Задача из журнала «Квант» (выпуск №1, 1998).

Условие

В треугольнике $ABC$ угол $A$ является наименьшим. Точки $B$ и $C$ делят окружность, описанную около этого треугольника, на две дуги. Пусть $U$ — внутренняя точка той дуги с концами $B$ и $C$, которая не содержит точку $A$. Серединные перпендикуляры к отрезкам $AB$ и $AC$ пересекают прямую $AU$ в точках $V$ и $W$ соответственно. Прямые $BV$ и $CW$ пересекаются в точке $T$. Докажите, что $$AU = TB + TC.$$

Решение

Нетрудно доказать, что если $\angle A$ — наименьший из углов $\triangle ABC$, то точка $T$ находится внутри этого треугольника. Пусть прямые $BV$ и $CW$ пересекают окружность, описанную около $\triangle ABC$, вторично в точках $B_1$ и $C_1$ соответственно (рис. 1).

В силу симметрии относительно серединного перпендикуляра к стороне $AB$ имеем $AU = BB_1$. Аналогично, $AU = CC_1$. Следовательно, $BB_1 = CC_1$, а значит, и $TB = TC_1$ ($BCB_{1}C_{1}$ — равнобедренная трапеция). Тогда $TB + TC = TC_1 + TC = CC_1 = AU$, что и требовалось доказать.

Замечания

  1. Если $\angle A = 30 ^ \circ$, а $O$ — центр окружности, описанной около $\triangle ABC$, то $|BT — CT| = OT$.
  2. Если отказаться от требования минимальности угла $A$, то (при условии, что прямые $BV$ и $CW$ действительно пересекаются, а не параллельны) справедливо следующее утверждение: из отрезков $AU$, $TB$ и $TC$ один равен сумме двух других. Например, в ситуации, изображенной на рисунке 2, $TB = AU + TC$.

M1722. Количество целых точек

Задача из журнала «Квант»(2000, №5)

Условие

Пусть [latex]a,b[/latex] — натуральные числа. Проведем через точку [latex](a;b)[/latex] прямую, отсекающую от первого координатного угла треугольник.
а) Докажите, что количество точек с целыми неотрицательными координатами, которые лежат внутри или на сторонах этого треугольника, больше, чем [latex]2 \cdot a \cdot b + a + b[/latex].
б) Докажите, что эта оценка точная: через точку [latex](a;b)[/latex] можно провести прямую, отсекающую от первого координатного угла треугольник, внутри и на сторонах которого всего [latex]2 \cdot a \cdot b + a + b[/latex] точек с целыми неотрицательными координатами.

Решение

Рассмотрим прямоугольник [latex]OABC[/latex] с центром в точке [latex]P(a;b)[/latex], и сторонами, параллельными осям координат(рис.1). Внутри и на сторонах этого прямоугольника всего [latex](2 \cdot a + 1) \cdot (2 \cdot b+1) = [/latex] [latex] 4\cdot a \cdot b + 2\cdot a + 2 \cdot b +1[/latex] целочисленных точек.
 
method-draw-image (8)
Pис.1
 
Чуть-чуть сдвинем точку [latex]A[/latex] вправо. Через полученную точку [latex]A'[/latex] и точку [latex]P[/latex] проведем прямую до пересечения с осью ординат в точке [latex]C'[/latex]. Если сдвиг был достаточно мал, то в треугольнике [latex]OA’C'[/latex] не появится ни одной точки с целыми координатами, которой не было бы в треугольнике [latex]OAC[/latex].
При центральной симметрии относительно [latex]P[/latex] любая целочисленная точка прямоугольника [latex]OABC[/latex] переходит в целочисленную точку этого же прямоугольника. Поэтому все отличные от [latex]P[/latex] целочисленные точки прямоугольника разбиваются на пары точек, симметричных относительно [latex]P[/latex].
Итак, если [latex]A'[/latex] достаточно близка к точке [latex]A[/latex], то внутри и на границе треугольника [latex]OA’C'[/latex] расположена ровно половина отличных от [latex]P[/latex] целочисленных точек, т.е. [latex]2 \cdot a \cdot b + a + b[/latex] точек. Вместе с точкой [latex]P[/latex] получаем всего [latex]2 \cdot a \cdot b + a + b + 1[/latex] точек. Мы решили пункт б).
 
Теперь займемся пунктом а). Для определенности, пусть прямая отсекает от первого координатного угла треугольник [latex]OA_1C_1[/latex], где точка [latex]A_1[/latex] расположена правее точки [latex]A[/latex](рис.2).
 
method-draw-image (9)
Рис.2
 
Чтобы получить треугольник [latex]OA_1C_1[/latex] из треугольника [latex]OAC[/latex], достаточно «отрезать» от последнего треугольник [latex]CC_{1}P[/latex] и добавить треугольник [latex]AA_{1}P[/latex].
Но при центральной симметрии относительно точки [latex]P[/latex] треугольник [latex]CC_{1}P[/latex] переходит в треугольник, являющийся частью треугольника [latex]AA_{1}P[/latex](закрашенный на рисунке 2). Целочисленные координаты при этом переходят в целочисленные. Задача решена.

Задача о 19-граннике

Задача из журнала «Квант» (1970, №7)

Условие

Около сферы радиуса $10$ описан некоторый $19$-гранник. Доказать, что на его поверхности найдутся две точки, расстояние между которыми больше $21$.

kvantTasc

Решение

Первое решение

Предположим противное, то есть, что расстояние между любыми двумя точками поверхности нашего $19$-гранника не больше $21$. Тогда этот многогранник лежит внутри сферы радиуса $11$, концентричной сфере радиуса $10$, а каждая его грань лежит между сферами. Поэтому площадь каждой грани не слишком велика, а именно, не превосходит площади круга, радиус которого равен $\sqrt{21}$. В нашем многограннике $19$ граней, поэтому площадь $S$ его поверхности не превосходит $19\cdot(\pi\cdot(\sqrt{21})^2) = \pi(20^2 -1^2)=399\pi$. Но многогранник описан около сферы радиуса $10$. Отсюда площадь его поверхности больше площади поверхности этой сферы $4\pi10^2$*. Итак, с одной стороны, $ S > 399\pi$, с другой стороны, $ S < 400\pi$. Полученное противоречие и решает задачу.

В этом (нестрогом) решении мы пропустили доказательства трёх утверждений, которые начинаются с трёх выделенных выше курсивом слов: тогда, поэтому, отсюда. Мы оставляем читателю эти простые доказательства, но хотим предупредить, что хотя третье утверждение легко доказывается для выпуклого многогранника с помощью сравнения его объёма с объёмом сферы**, тем не менее интуитивно ясное и правильное утверждение о том, что наш многогранник выпуклый, трудно доказать строго, так как само строгое определение многогранника весьма сложно. (Загляните, например, в книгу И. Лакатоса «Доказательства и опровержения» М., «Наука», 1967).

Второе решение

Поставим более общий вопрос: какое наименьшее число граней может иметь многогранник, описанный около сферы радиуса $r$ и целиком лежащий в концентрической с ней сфере радиуса $R > r$. (Вот житейская ситуация, которая подсказала автору эту задачу: каким наименьшим числом прямолинейных взмахов ножа можно срезать верхний слой кожуры апельсина, не срезав при этом ни одного куска сердцевины? Очевидно, что после срезания всего верхнего слоя кожуры остаток будет многогранником, так как на его поверхности не будет ни одного закругленного участка, так что этот вопрос эквивалентен предыдущему.)

Мы не знаем точного ответа на этот более общий вопрос, но докажем для числа граней некоторое неравенство, которое при $r = 10, R = 11$ показывает, что $N < 22$. Тем самым мы докажем, что если в условии задачи вместо $19$-гранника взять $22$-гранник, то утверждение задачи по-прежнему останется справедливым.

Итак, пусть $N$-гранник описан около сферы радиуса $r$ и целиком лежит внутри сферы радиуса $R$. Рассмотрим какую-нибудь его грань.

Проходящая через неё плоскость отрезает от сферы шапочку (сегментную поверхность) высоты $R — r$. Ясно, что если построить шапочки для всех граней нашего многогранника, то их объединение покроет всю внешнюю сферу. Каждая из $N$ шапочек есть сегментная поверхность высоты $R — r$, и, следовательно, имеет площадь $2\pi R(R — r)$. Сумма площадей всех шапочек больше площади сферы. Поэтому $N\cdot 2\pi R(R — r) > 4\pi R^2$, отсюда $N > {\frac{2R}{R-r}}$, в частности, при $R = 11, r = 10$ получаем $N > 22$.

Интересно, что по любому набору шапочек, целиком покрывающих внешнюю сферу, можно построить многогранник, описанный около внутренней сферы. (Докажите!) Поэтому наш вопрос про минимальное число граней полностью эквивалентен следующему вопросу. Каково минимальное число $N = N(h)$ шапочек высоты h, целиком покрывающих сферу радиуса $1$? (В исходной задаче $h = {\frac{1}{11}}$.)

Очевидно, что $N(h) > {\frac{2}{h}}$, но это неравенство отражает просто тот факт, что сумма площадей шапочек больше площади сферы, в то время как интуитивно ясно, что при $h > 1$ шапочки должны довольно сильно перекрываться. И действительно, можно доказать, что при достаточно малых $h$

$ N(h) > 1,2\frac{2}{h}$.

Попробуйте сами доказать, например, что при $h < 1$

$N(h) > 1,001\frac{2}{h}$

А. Г. Кушниренко

* Напомним, что для шара радиуса $R$ объем равен $\frac{4}{3}\pi R^3$, площадь сегментной поверхности с высотой $h$ равна $2\pi Rh$ и, в частности, площадь сферы равна $4\pi R^2$

** Действительно, объем многоугольника равен $\frac{RS}{3}$, где $R$ — радиус вписанной сферы, а $S$ — площадь его поверхности.