M1635. О разбиении сторон правильного треугольника на $n$ равных отрезков.

Задача из журнала «Квант» (выпуск №2, 1998).

Условие

    Каждая сторона правильного треугольника разбита на $n$ равных отрезков, и через все точки деления проведены прямые, параллельные сторонам. Данный треугольник разбился на $n^{2}$ маленьких треугольников-клеток. Треугольники, расположенные между двумя соседними параллельными, образуют полоску.

  1. Какое наибольшее число клеток можно отметить, чтобы никакие две отмеченные клетки не принадлежали одной полоске ни по одному из трёх направлений, если $n=10$?
  2. Тот же вопрос для $n=9$.

Решение

  1. На рисунке 1 показан способ отметить 7 треугольников. Чтобы доказать, что при $n=10$ нельзя отметить 8 треугольников, разрежем исходный треугольник средними линиями на четыре треугольника. Каждый из них состоит из 25 треугольничков. Обозначим количества отмеченных треугольничков в угловых треугольниках буквами $k,l,m$, а в центральном — $n$. Тогда $k+l+n \leq 5$, поскольку два угловых треугольника вместе с центральным состоят из 5 полос. Аналогично,$l+m+n \leq 5$ и $m+k+n \leq 5$.
    Сложим эти три неравенства: $2k+2l+2m+3n \leq 15$. Следовательно, $ k+l+m+n \leq \frac{1}{2} \cdot (2\cdot k+2\cdot l+2\cdot m+3\cdot n)\leq \frac{15}{2} < 8 $.
  2. Решим задачу для произвольного $n$. Рассмотрим одну из сторон исходного треугольника и пронумеруем полоски соответствующего направления следующим образом: полоска, прилегающая к стороне, пусть будет иметь номер 1; следующая за ней — номер 2;…; полоска, состоящая из одного треугольника, примыкающего к вершине исходного большого треугольника, получит номер $n$.
    Теперь положение любого из $n^{2}$ треугольничков можно задать тройкой чисел — номеров полосок, в которых он лежит.
    Уточнение о номерах полосок

    Тройки номеров являются дискретным аналогом барицентрических координат, при которых положение любой точки, лежащей внутри правильного треугольника, определяется расстояниями до трёх его сторон. Сумма этих расстояний, как легко проверить, равна высоте треугольника.

    [свернуть]

    Введённые нами тройки номеров = «координаты» треугольничков — не могут принимать произвольные значения. Их сумма равна $n+2$, если треугольничек расположен «остриём вверх» (т.е. ориентирован так же, как исходный большой треугольник), и равна $n+1$, если «остриём вниз».
    Предположим, отмечены $k$ треугольников, никакие два из которых не попали в одну полоску. Оценим сумму $S$ всех их координат двумя способами. С одной стороны, сумма координат любого треугольника не превышает $n+2$, поэтому $ S\leq k\cdot (n+2) $. С другой стороны, сумма значений одной из координат по всем отмеченным треугольникам не меньше чем $1+2+3+\cdots +k=\frac{k\cdot (k+1)}{2}$. Значит, $3\cdot \frac{k\cdot (k+1)}{2}\leq S\leq k\cdot (n+2)$, откуда $3\cdot \frac{k+1}{2}\leq n+2$, т.е. $k+1\leq \frac{2\cdot n+4}{3}$. Итак, $k\leq \frac{2\cdot n+1}{3}\cdots$.
    Отметить $[\frac{2\cdot n+1}{3}]$ треугольничков можно следующим образом. Рассмотрим число $m=[\frac{n+1}{3}]$. На основании исходного треугольника отметим $(m+1)-й$ слева треугольничек, расположенный остриём вверх. В этой же вертикали отметим и все остальные треугольнички, ориентированные остриём вверх (рис.2).

    Всего в этой вертикали отмечено $(m+1)$ треугольничков. На второй горизонтальной полосе большого треугольника отметим $(2\cdot m+1)-й$ (считая слева) треугольничек, расположенный остриём вверх. Отметим и все остальные треугольнички этой вертикали, ориентированные остриём вверх. Всего в этой вертикали будет отмечено $n-1-2\cdot m$ треугольничков.
    Общее количество отмеченных треугольничков есть $m+1+n-1-2\cdot m=n-m=n-[\frac{n+1}{3}]=[\frac{2\cdot n+1}{3}]$.
    Чтобы проверить последнее равенство, достаточно разобрать три случая: $n$ равно $3\cdot a, 3\cdot a+1$ и $3\cdot a+2$.

M447. Задача об остроугольном треугольнике

Задача из журнала «Квант»(1977, №6)

Условие

В остроугольном треугольнике $ABC$ отрезки $BO$ и $CO$ (где $O$ — центр описанной окружности) продолжены до пересечения в точках $D$ и $E$ со сторонами $AC$ и $BC$ треугольника. Оказалось, что $\widehat{BDE}=50^{\circ}$, а $\widehat{CED}=30^{\circ}$. Найдите величины углов треугольника $ABC$ и докажите равенства $\left | AE \right |=\left | ED \right |$, $\left | CE \right |=\left | CB \right |$, $\left | CD \right |=\left | CO \right |$.

Решение

Величина угла $A$ находится легко (см. рис. 1): поскольку $\widehat{BOC}=\widehat{EOD}=180^{\circ}-30^{\circ}-50^{\circ}=100^{\circ}$, величина вписанного угла $A=50^{\circ}$. Заметим также, что $\widehat{OBC}=\widehat{OCB}=40^{\circ}$ (поскольку $\left | BO \right |=\left | CO \right |$).

Рис. 1

Рис. 1

Найти величины других углов треугольника $ABC$ можно с помощью теоремы синусов. Положим $\widehat{EBD}=\varphi $. Тогда $\widehat{OEB}=100^{\circ}-\varphi $, $\widehat{ABC}=\varphi +40^{\circ}$, $\widehat{ACB}=90^{\circ}-\varphi $, $\widehat{OCD}=50^{\circ}-\varphi $, $\widehat{ODC}=\varphi +50^{\circ}$; таким образом, $0^{\circ}< \varphi < 50^{\circ}$. Из треугольников $ODE, OBE$ и $OCD$ находим: $$\frac{\sin 50^{\circ}}{\sin 30^{\circ}}=\frac{\left | OE \right |}{\left | OD \right |}=\frac{\left | OE \right |}{\left | OB \right |}\cdot \frac{\left | OE \right |}{\left | OD \right |}=$$ $$=\frac{\sin \widehat{OBE}}{\sin \widehat{OEB}}\cdot \frac{\sin \widehat{ODC}}{\sin \widehat{OCD}}=\frac{\sin \varphi \sin \left ( \varphi +50^{\circ} \right )}{\sin \left ( 100^{\circ} -\varphi \right )\sin \left ( 50^{\circ}-\varphi \right )} .$$ Уравнение, из которого мы должны найти $\varphi \left ( 0^{\circ} < \varphi < 50^{\circ}\right )$: $$\frac{\sin \varphi \sin \left ( \varphi +50^{\circ} \right )}{\sin \left ( 100^{\circ} -\varphi \right )\sin \left ( 50^{\circ}-\varphi \right )} = 2\sin 50^{\circ},$$ эквивалентно следующим: $$2\sin 50^{\circ}\left ( \cos 50^{\circ} -\cos \left ( 150^{\circ} -2\varphi \right ) \right ) =\cos 50^{\circ}-\cos \left ( 50^{\circ}+2\varphi \right ),$$ $$\sin 20^{\circ}-\sin\left ( 2\varphi -40^{\circ} \right )+2\sin 50^{\circ}\cos \left ( 2\varphi +30^{\circ} \right )=0,$$ $$\cos \left ( \varphi -10^{\circ} \right )\sin \left ( 30^{\circ}-\varphi \right )+\sin 50^{\circ}\sin \left ( 60^{\circ}-2\varphi \right )=0,$$ $$\sin\left ( 30^{\circ} -\varphi \right )\left ( \cos \left ( \varphi -10^{\circ} \right )+2\sin 50^{\circ}\cos \left ( 30^{\circ}-\varphi \right ) \right )=0.$$ Поскольку $\cos \left ( \varphi -10^{\circ} \right )$ и $\cos \left ( \varphi -30^{\circ} \right )$ положительны при $0^{\circ}< \varphi < 50^{\circ}$, последнее уравнение имеет единственный корень $\varphi =30^{\circ}$.

Отсюда $\widehat{ABC}=70^{\circ}$, $\widehat{ACB}=60^{\circ}$/

Далее, $\widehat{BEC}=70^{\circ}\Rightarrow \left | CE \right |=\left | CB \right |;$ $$\widehat{ODC}=80^{\circ}\Rightarrow \left | CD \right |=\left | CO \right |;~\widehat{ADE}=50^{\circ}\Rightarrow \left | EA \right |=\left | ED \right |.$$

Равенства длин, которые требуется установить в задаче, подсказывают, какие углы должен иметь треугольник $ABC$. Но даже зная ответ, придумать данное выше тригонометрическое решение трудно. Вместо этого можно рассуждать иначе.

Рис. 2

Рис. 2

Заметим прежде всего, что условия $\widehat{OED}=30^{\circ}, \widehat{ODE}=50^{\circ}$ определяют ответ однозначно. Действительно (рис. 2), если на окружности с центром $O$ закрепить точки $B$ и $C$ так, что $\widehat{BOC}=100^{\circ}$, и перемещать точку $A$ по дуге ${B}'{C}’$ (симметричной дуге $BC$) от точки ${B}’$ к точке ${C}’$, то точка $D\in \left [ {B}’O \right ]$ будет приближаться к $O$, а $E\in \left [ O{C}’\right ]$ — удаляться от $O$; при этом величина угла $\widehat{ODE}$ будет возрастать, а угла $\widehat{OED}$ — убывать; значит, только при одном положении $A$ эти величины могут принять нужные значения ($50^{\circ}$ и $30^{\circ}$).

Рис. 3

Рис. 3

Теперь нужно лишь доказать, что треугольник с углами $\widehat{A}=50^{\circ}$, $\widehat{B}=70^{\circ}$, $\widehat{C}=60^{\circ}$ удовлетворяют условию, то есть что все углы — такие, как указано на рисунке 3:

  1. Достаточно проверить, что $DE$ — биссектриса угла $ADB$: $$\frac{\left | AE \right |}{\left | EB \right |}=\frac{\left | AE \right |}{\left | EC \right |}=\frac{\left | EC \right |}{\left | EB \right |}=\frac{\sin 20^{\circ}\sin 70^{\circ}}{\sin 50^{\circ}\sin 40^{\circ}}=$$ $$\frac{2\sin 20^{\circ}\cos 20^{\circ}}{2\sin 50^{\circ}\sin 40^{\circ}}=\frac{\sin 30^{\circ}}{\sin 50^{\circ}}=\frac{\left | AD \right |}{\left | DB \right |}.$$
    Здесь мы снова используем теорему синусов. А вот чисто геометрическое доказательство.
  2. Рис. 4

    Рис. 4

  3. Треугольник $ECB$ имеет ось симметрии, поскольку $\widehat{CEB}=\widehat{CBE}$. Пусть $K$ — точка, симметричная точке $O$ относительно этой оси (рис. 4). Тогда треугольник $KCD$ равносторонний ($\left | KC \right |=\left | OC \right |=\left | DC \right |=a,~\widehat{KCD}=60^{\circ}$), и потому $\left | KD \right |=a,~\widehat{DKC}=\widehat{KDC}=60^{\circ}$, а $\bigtriangleup KBE\cong \bigtriangleup OEB$, и потому $
    \widehat{BEK}=30^{\circ},~\widehat{EKB}=80^{\circ},~\left | EK \right |=\left | OB \right |=a$. Итак, треугольник $EKD$ равнобедренный, $\widehat{EKD}=40^{\circ}$, поэтому $\widehat{KED}=\widehat{KDE}=70^{\circ},$ $\widehat{ODE}=70^{\circ}- \widehat{ODK}=70^{\circ}-\left ( 80^{\circ} -60^{\circ}\right )=50^{\circ},$ $\widehat{OED}=70^{\circ}-40^{\circ}=30^{\circ}.$

Н. Васильев,
Я. Суконник

М1476

Условие

Докажите, что не существует различных простых чисел p, q таких, что [latex]2^{p}+1[/latex] делится на [latex]q[/latex], [latex]2^{q}+1[/latex] делится на [latex]p[/latex].

Доказательство

Ясно, что [latex]p[/latex] и [latex]q[/latex] нечетны, и если одно из них равно 3, то другое тоже должно равняться 3. Поэтому будем в дальнейшем считать, что [latex]p>q>3[/latex].

Первое решение.

Из условия следует, что [latex]2^{2p}\equiv1(\bmod m)[/latex].
С другой стороны, согласно малой теореме Ферма, для простого [latex]q[/latex] имеем: [latex]2^{q-1}\equiv1(\bmod q)[/latex].
Пусть n — найменьшее натуральное число такое, что [latex]2^n=1(mod q)[/latex]. Тогда [latex]n\neq 2[/latex] — отличный от единицы делитель числа [latex]2p[/latex]. Значит, [latex]n=p[/latex] либо [latex]n=2p[/latex], т.е. n не является делителем числа [latex]q-1[/latex]. Противоречие.
Второе решение можно получить, опираясь на следующее утверждение.

Лемма 1

Пусть [latex]p[/latex], [latex]q[/latex] — простые числа, [latex]q\neq 3[/latex],[latex]2^{p}+1[/latex] делится на [latex]q[/latex]. Тогда [latex]q=2kp+1[/latex], где [latex]k[/latex] — натуральное число. Эту лемму легко доказать, заметив, что число n в первом решении равно [latex]2p[/latex]. Из нее следует, что [latex]q>p[/latex]. Противоречие.
Еще одно решение можно получить, опираясь на такое утверждение.

Лемма 2

Если числа a и b взаимно просты, то НОД([latex]2^{a}+1[/latex], [latex]2^{b}+1[/latex])=1,

либо НОД([latex]2^{a}+1[/latex], [latex]2^{b}+1[/latex])=3
(причем второй случай имеет место тогда и только тогда, когда [latex]a[/latex] и [latex]b[/latex] нечетны).

Третье решение

Имеем:[latex]2^{p}+1[/latex] делится на [latex]q[/latex]; [latex]2^{q-1}-1[/latex], по малой теореме Ферма, также делится на [latex]q[/latex]. Следовательно, и [latex]2^{p-q+1}+1[/latex] делится на [latex]q[/latex] — в противоречии с леммой 2.

Замечание.

Лемма 2 является частным случаем следующего несложного утверждения. Пусть НОД([latex]m[/latex],[latex]n[/latex])=1, НОД([latex]a[/latex],[latex]b[/latex])=[latex]d[/latex], НОД([latex]m^{a}+n^{a}[/latex], [latex]m^{b}+n^{b}[/latex])=[latex]d_{1}[/latex]. Тогда [latex]d_{1}=m^{d}+n^{d}[/latex], если числа [latex]\frac{a}{d}[/latex] и [latex]\frac{b}{d}[/latex] оба нечетны; [latex]d_{1}=1[/latex] либо [latex]d_{1}=2[/latex] в противном случае (а именно: [latex]d_{1}=1[/latex], если [latex]m[/latex] и [latex]n[/latex] разной четности; [latex]d_{1}=2[/latex], если [latex]m[/latex] и [latex]n[/latex] нечетны).

M1481. О биссектрисах вписанного треугольника

Квант_1Задача из журнала «Квант» (1995 №2)

Условие

В треугольнике [latex]ABC[/latex] проведена биссектриса [latex]AK[/latex], [latex]D[/latex] — точка пересечения биссектрисы внешнего угла при вершине [latex]B[/latex] с описанной окружностью. Докажите, что если [latex]\angle A> \angle C[/latex], то

[latex]\sin A / \sin C- \sin \angle CDK/ \sin \angle BDK=1.[/latex]

Доказательство

Пусть углы [latex]A, B, C[/latex] треугольника равны [latex]2\alpha, 2\beta, 2\gamma[/latex] соответственно. Биссектриса внутреннего угла [latex]B[/latex] пересекает дугу [latex]AC[/latex] описанной окружности в точке [latex]L[/latex], диаметрально противоположной [latex]D[/latex](рис. 1).

Рис. 1

Положим [latex]\angle CBD=\delta, \angle BCD=\varepsilon[/latex]. Используя теорему синусов(для [latex]\vartriangle DBK[/latex] и [latex]\vartriangle CDK[/latex]), теорему о биссектрисе треугольника ([latex]BK/KC = AB/AC = \sin 2\gamma / \sin 2\beta[/latex]) и формулу

[latex]2 \sin \varphi \cos\psi = \sin(\varphi + \psi) — \sin(\psi — \varphi)[/latex],

получаем

[latex]\frac{\sin \angle CDK}{\sin \angle BDK} = [/latex] [latex]\frac{KC \sin \varepsilon}{KB \sin \delta} = [/latex] [latex]\frac{ \sin 2\beta \cdot \sin \frac{\pi — 4\gamma — 2\beta}{2}}{\sin 2\gamma \cdot \sin \frac{\pi — 2\beta}{2}} = [/latex]

[latex]\frac{2 \sin \beta \cos \beta \cos(2\gamma + \beta)}{\sin2\gamma \cos \beta} = [/latex] [latex]\frac{\sin(2\beta + 2\gamma)}{\sin2\gamma} — 1 = [/latex] [latex]\frac{\sin2\alpha}{\sin2\gamma} — 1[/latex]

что и требовалось доказать.

Замечание

Если [latex]\angle A< \angle C[/latex] (как на рисунке 2), то меняется лишь знак в формуле

[latex]\sin \varepsilon = \sin(2\gamma + \beta — \pi /2)= — \cos (2\gamma + \beta)[/latex]

а [latex]\sin \delta[/latex] по-прежнемe равен [latex]\sin( \beta + \pi /2) = \cos \beta[/latex], так что равенство в условии принимает вид

[latex]\frac{\sin A}{\sin C} + \frac{\sin \angle CDK}{\sin \angle BDK} = 1[/latex]

Рис. 2

Тест 2016

Рабочее тестирование плагина в 2016 году

M1161. Задача о 10 бильярдных шарах

Задача из журнала «Квант»(1989, №5)

Условие

В бильярдном треугольнике вплотную помещается $10$ шаров. Докажите, что если в нем поместить $9$ шаров, то обязательно останется место для десятого (т.е. центры $9$ шаров расположатся по треугольной сетке)
alina2

Решение

Примем диаметр шара за $1$. Задача эквивалентна следующей: доказать, что если $9$ точек $K_1, K_2, \cdots, K_9$, попарные расстояния между которыми не меньше $1$, размещены в правильном треугольнике со стороной $3$, то они обязательно находятся в вершинах треугольной решетки со стороной $1$ (в $9$ из $10$ черных точек на рисунке 2). Достаточно доказать, что $6$ (или $7$) из точек $K_i$ находяться в пределах красного шестиугольника, причем они обязательно находяться в его вершинах или в центре $O$ — ведь в каждом угловом треугольнике со стороной $1$ (не на красной стороне) может находится лишь одна из точек $K_i$, причем если на его красной стороне есть другая точка $K_j$, то $K_i$ лежит в вершине большого треугольника.

alina

Ясно, что если одна из $6$ точек $K_i$ внутри шестиугольника совпадает с $O$, то остальные лежат в вершинах. Если же все они отличны от $O$, то отрезки $OK_i$, проведенные в эти точки, образуют между собой углы $60^{\circ}$ (если $\angle K_i O K_j < 60^{\circ} $, $OK_i \leq 1$ , $OK_j \leq 1$, то $K_i K_j$ < 1 ) и $OK_i = 1$

По-видимому, верен и такой факт: если из $1+2+\cdots+n = \frac{n(n+1)}{2}$ шаров, вплотную уложенных в треугольную коробку, убрать один шар, то остальные обязательно будут распологаться по треугольной сетке — так что убранный шар можно уложить на место.

Н. П. Долбинин