Матрицы. Виды матриц. Равенство матриц. Операции над матрицами

Матрицы. Виды матриц

Определение. Прямоугольная таблица, на пересечении строк и столбцов которой находятся элементы поля, называется матрицей.

Нагляднее всего использование подобных таблиц демонстрируется в решении систем линейных алгебраических уравнений (СЛАУ), поскольку решение зависит именно от матриц системы. Например, исходная система имеет вид:
$$ \left.\begin{matrix}a_{11}x_{1}+&\ldots& +a_{1n}x_{n} & = &b_{1}\\ \cdot & \cdot &\cdot & \cdot &\cdot\\a_{m1}x_{1}+ &\ldots& +a_{mn}x_{n} & = & b_{m}\end{matrix}\right\}.$$ Как видим, в системе $m$ — количество уравнений, а $n$ — количество неизвестных. Матрицы этой системы выглядят так: $$A=\left(\begin{matrix}a_{11} & \cdots & a_{1n} \\\cdot & \cdot & \cdot\\ a_{m1} & \cdots & a_{mn} \end{matrix}\right),\,B=\left(\begin{matrix}b_{1} \\\vdots \\ b_{m} \end{matrix}\right).$$
Матрица системы вида:
$$A\mid B=\left(\left.\begin{matrix}a_{11} & \cdots & a_{1n} \\\cdot & \cdot & \cdot \\a_{m1} & \cdots &a_{mn}\end{matrix}\right|\begin{matrix}b_{1}\\ \cdot \\ b_{m}\end{matrix}\right),$$
считается расширенной матрицей системы.

Определение. Элементы поля расположенные на пересечении строк и столбцов матрицы называются ее элементами.

Что касается индексации элементов матрицы, сперва записывается номер строки, в которой стоит элемент, а следом номер столбца. Нумерация строк и столбцов матрицы происходит вполне логичным образом: строки нумеруются сверху вниз, а столбцы — слева направо.

Определение. Количество строк и столбцов матрицы называют размерами матрицы.

Множество матриц над полем $P$ размеров $m\times n$ обозначим $M_{m\times n}\left ( P\right ),$ а в случае $m=n$ — $M_{n}\left ( P \right ).$ Традиционно матрицы обозначают большими латинскими буквами. Если надо указать, из каких элементов состоит матрица, то пишут $A=\left (a_{ij}\right )\in M_{m\times n}\left ( P \right ).$

Определение. Матрица, у которой одинаковое количество строк и столбцов, называется квадратной. Размер такой матрицы называют порядком.

Пример$$A=\left(\begin{array}{rrr}2 & -5 & 4 \\3 & 1 & 0 \\ 12 & 7 & 0 \end{array}\right),$$ $A$ — квадратная матрица третьего порядка.

Определение. Совокупность элементов квадратной матрицы, расположенных вдоль диагонали, идущей из левого верхнего угла в правый нижний, называется главной диагональю матрицы, а вторая диагональ — побочной (см. рис.1).

Рис. 1

Определение. Матрица $A=\left(
a_{ij}\right )\in M_{n}\left ( P \right )$ называется верхней (нижней) треугольной, если $a_{ij}=0$ для $i>j$ $(i<j).$ Иными словами, верхняя (нижняя) треугольная матрица — это матрица, у которой все элементы, расположенные ниже (выше) главной диагонали, равны нулю.

Пример$$A=\left(\begin{matrix}1 & 8 & 1 \\0 & 4 & 7 \\ 0 & 0 & 2 \end{matrix}\right),\;B=\left(\begin{matrix}1 & 0 & 0 \\8 & 4 & 0 \\ 1 & 7 & 2 \end{matrix}\right),$$

$A$ — верхняя треугольная матрица третьего порядка, $B$ — нижняя треугольная матрица третьего порядка.

Определение. Если квадратная матрица является как нижней, так и верхней треугольной, то она называется диагональной. Иными словами, диагональная матрица — это матрица, у которой все элементы вне главной диагонали равны нулю.

Пример$$A=\left(\begin{matrix}1 & 0 & 0 \\0 & 2 & 0 \\ 0 & 0 & 3 \end{matrix}\right),$$

$A$ — диагональная матрица третьего порядка.

Определение. Диагональная матрица, у которой все элементы главной диагонали равны между собой, называется скалярной.

Пример$$A=\left(\begin{matrix}8 & 0 & 0 \\0 & 8 & 0 \\ 0 & 0 & 8 \end{matrix}\right),$$

$A$ — скалярная матрица третьего порядка.

Определение. Скалярная матрица, у которой диагональные элементы равны единице поля, называется единичной.

Пример$$A=\left(\begin{matrix}1 & 0 & 0 \\0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix}\right),$$

$A$ — единичная матрица третьего порядка.

Определение. Матрица, все элементы которой равны нулю, называется нулевой.

Пример$$A=\left(\begin{matrix}0 & 0 & 0 \\0 & 0 & 0 \\ 0 & 0 & 0 \end{matrix}\right),$$

$A$ — нулевая матрица третьего порядка.

Определение. Матрица вида $$A=\left(\begin{matrix}A_{1}&& 0 \\ &\ddots & \\ 0 & &A_{s} \end{matrix}\right),$$ где $A_{1}…A_{s}$ — квадратные матрицы (блоки) произвольных порядков, расположенные таким образом, что их главные диагонали составляют главную диагональ матрицы $A,$ а остальные элементы, не входящие в блоки равны нулю, называется клеточнодиагональной или квазидиагональной.

Пример$$A=\left(\begin{matrix}2&5&0&0&0&0\\6&3&0&0&0&0\\0&0&1&4&5&0\\0&0&2&2&3&0\\0&0&9&1&7&0\\0&0&0&0&0&4\end{matrix}\right),$$

$A$ — клеточнодиагональная (квазидиагональная) матрица шестого порядка.

Равенство матриц. Операции над матрицами

Равенство матриц

Определение. Две матрицы одинаковых размеров называются равными, если совпадают их элементы с одинаковыми индексами.

Замечание. Для матриц $A=\left (a_{ij}\right ),$ $B=\left (b_{ij}\right )\in M_{m\times n}\left ( P \right )$ равенство $A=B,$ т.е. $\left (a_{ij}\right )=\left (b_{ij}\right )$ означает $a_{ij}=b_{ij}$ для всех $i=\overline{1,\,m}$ и $j=\overline{1,\,n}.$

Пример$$A=\left(\begin{matrix}2&3\\0&1\end{matrix}\right),\;B=\left(\begin{matrix}2&3\\0&1\end{matrix}\right).$$ Порядок матрицы $A$ совпадает с порядком матрицы $B,$ и элементы матриц с соотвествующими индексами равны, поэтому $A=B$.

Сложение матриц

Определение. Пусть заданы матрицы $A=\left(a_{ij}\right ),$ $B=\left(b_{ij}\right )\in M_{m\times n}\left ( P \right ).$ Их суммой называется матрица $C=\left (c_{ij}
\right ) = A+B=\left (a_{ij}\right )+\left (b_{ij}\right )=\left(a_{ij}+b_{ij}\right )\in M_{m\times n}\left ( P \right ).$

Таким образом, можно складывать матрицы одинаковых размеров. При этом получается матрица тех же размеров.

Пример$$A=\left(\begin{array}{rrr}5&-8\\2&0\\1&4\end{array}\right),\,B=\left(\begin{array}{rrr}1&9\\4&3\\-1&-5\end{array}\right),\;A+B-?$$

Решение

$$A+B=\left(\begin{array}{rrr}5&-8\\2&0\\1&4\end{array}\right)+\left(\begin{array}{rrr}1&9\\4&3\\-1&-5\end{array}\right)=$$ $$=\left(\begin{array}{rrr}5+1&-8+9\\2+4&0+3\\1-1&4-5\end{array}\right)=\left(\begin{array}{rrr}6&1\\6&3\\0&-1\end{array}\right).$$

[свернуть]

Умножение на элемент поля

Определение. Пусть задана матрица $A=\left (a_{ij}
\right )\in M_{m\times n}\left ( P \right )$ и элемент поля $\lambda \in P.$ Тогда произведением матрицы $A$ на элемент $\lambda$ называется матрица $$B=\left (b_{ij}\right )=\lambda \cdot A=\lambda \cdot \left (a_{ij}\right )=\left (\lambda \cdot a_{ij}\right )\in M_{m\times n}\left (P \right ).$$

Умножая матрицу произвольных размеров на элемент поля, в результате получаем матрицу тех же размеров, каждый элемент которой равен произведению соответствующего элемента исходной матрицы на элемент поля.

Пример$$A=\left(\begin{array}{rrr}0 & -1 & 8 \\4 & 1/2 & 2 \\ -6 & 0 & 3 \end{array}\right),\;-\frac{1}{2}\cdot A-?$$

Решение

$$-\frac{1}{2}\cdot A=-\frac{1}{2}\cdot \left(\begin{array}{rrr}0 & -1 & 8 \\4 & 1/2 & 2 \\ -6 & 0 & 3 \end{array}\right)=$$ $$=\left(\begin{array}{rrr}-1/2\cdot 0 & -1/2\cdot \left (-1\right ) & -1/2\cdot 8 \\-1/2\cdot 4 & -1/2\cdot 1/2 & -1/2\cdot 2 \\ -1/2\cdot \left (-6\right ) & -1/2\cdot 0 & -1/2\cdot 3 \end{array}\right)=$$ $$=\left(\begin{array}{rrr}0 & 1/2 & -4 \\-2 & -1/4 & -1 \\ 3 & 0 & -3/2 \end{array}\right).$$

[свернуть]

Отметим простейшие свойства операции умножения на элемент поля. Именно:

  1. $1\cdot A=A,\;$ $\forall A\in M_{m\times n}\left ( P \right );$
  2. $\lambda \cdot \left ( \mu \cdot A \right )=\left ( \lambda \mu \right )\cdot A=\left ( \mu \lambda \right ) \cdot A,\;$ $\forall \lambda ,\mu \in P,$ $\forall A\in M_{m\times n}\left ( P\right );$
  3. $\left ( \lambda +\mu \right )\cdot A=\lambda \cdot A+\mu \cdot A,$ $\forall \lambda ,\mu \in P,\;$ $\forall A\in M_{m\times n}\left ( P\right );$
  4. $\lambda \cdot \left ( A+B \right )=\lambda \cdot A+\lambda \cdot B,$ $\forall \lambda \in P,\,$ $\forall A,B\in M_{m\times n}\left ( P \right ).$

Умножение матриц

Определение. Пусть заданы матрицы $A=\left (a_{ij}\right )\in M_{m\times n}\left ( P \right ),$ $B=\left (b_{ij}\right )\in M_{n\times s}\left ( P \right ).$ Произведением матрицы $А$ на матрицу $В$ называется матрица $C=A\cdot B,\,$ $C=\left (c_{ij}\right )\in M_{m\times s}\left ( P \right )$ такая, что $c_{ij}=\sum\limits_{k=1}^{n}a_{ik}\cdot b_{kj}$ для всех $i=\overline{1,\,m}$ и $j=\overline{1,\,s}.$

Из операций над матрицами умножение считается самой трудной. Рассмотрим эту операцию подробнее. На рис.2 используем вторую строку первой матрицы и третий столбец второй матрицы. $$1\cdot 2+2\cdot 2+0\cdot 5=6.$$ Получившийся элемент стоит в строке и столбце с теми же номерами (вторая строка, третий столбец).

Рис. 2

Аналогично находятся другие элементы. На рис.3 используем первую строку матрицы слева и четвертый столбец матрицы справа.$$2\cdot 3+3\cdot 2+4\cdot 1=16.$$ Как видим, получившийся элемент стоит в строке и столбце с соответствующими номерами.

Рис. 3

Пример$$A=\left(\begin{matrix}1 & 4 & 7 \\2 & 0 & 2\end{matrix}\right),\;B=\left(\begin{matrix}6 & 1 & 1\\7 & 3 & 2\\1&5&4\end{matrix}\right),\;A\cdot B-?$$

Решение

Количество стoлбцов матрицы $A$ совпадает с количеством строк матрицы $B$, поэтому существует произведение $A\cdot B.$

$$A\cdot B=\left(\begin{matrix}1 & 4 & 7 \\2 & 0 & 2\end{matrix}\right)\cdot \left(\begin{matrix}6 & 1 & 1\\7 & 3 & 2\\1&5&4\end{matrix}\right)=$$ $$=\left(\begin{matrix}1\cdot 6+4\cdot 7+7\cdot 1 & 1\cdot 1+4\cdot 3+7\cdot 5 & 1\cdot 1+4\cdot 2+ 7\cdot 4\\2\cdot 6+0\cdot 7+2\cdot 1 & 2\cdot 1+0\cdot 3+2\cdot 5& 2\cdot 1+0\cdot 2+2\cdot 4\end{matrix}\right)=$$ $$=\left(\begin{matrix}41 & 48 & 37\\14 & 12 & 10\end{matrix}\right).$$

[свернуть]

Легко заметить, что не любые матрицы можно перемножить. Требуется, чтобы число столбцов матрицы слева совпадало с количеством строк матрицы справа. Кроме того, если существуют оба произведения $A\cdot B$ и $B\cdot A,$ то, произведение $A\cdot B,$ вообще говоря, не равно произведению $B\cdot A,$ то есть операция умножения матриц не является коммутативной. Это объясняется несимметричностью использования строк и столбцов левого и правого сомножителей. Однако умножение матриц обладает свойством ассоциативности.

Пример

$$A=\left(\begin{matrix}3 & 6 \\4 & 10\\2&8\end{matrix}\right),\;B=\left(\begin{matrix}1 & 5&3\\7 &2&0\end{matrix}\right).$$ $$A\cdot B=\left(\begin{matrix}3 & 6 \\4 & 10\\2&8\end{matrix}\right)\cdot \left(\begin{matrix}1 & 5&3\\7 &2&0\end{matrix}\right)=\left(\begin{matrix}45 & 27&9 \\74 & 40&12\\58&26&6\end{matrix}\right);$$ $$B\cdot A=\left(\begin{matrix}1 & 5&3\\7 &2&0\end{matrix}\right)\cdot \left(\begin{matrix}3 & 6 \\4 & 10\\2&8\end{matrix}\right)=\left(\begin{matrix}29 & 80 \\29 & 62\end{matrix}\right).$$ $$\left(\begin{matrix}45 & 27&9 \\74 & 40&12\\58&26&6\end{matrix}\right)\neq \left(\begin{matrix}29 & 80 \\29 & 62\end{matrix}\right)\Rightarrow A\cdot B\neq B\cdot A.$$

[свернуть]

Примеры задач

Пример 1. Даны матрицы $A$, $B$ и $C$. Найти матрицу $D=-2\cdot A\cdot B\cdot E+C,\;$ $E$ — единичная матрица соответствующего порядка. $$A=\left(\begin{matrix}-2 & -3 & -5 \\-1 & -2 & -8\\ -4& -6 & -1\end{matrix}\right),\;B=\left(\begin{matrix}2 & 1 & 10\\7 & 3 & 3\\1&5&4\end{matrix}\right),\;C=\left(\begin{matrix}21 & 42 & 4\\-6 & 12 & 9\\14&10&1\end{matrix}\right).$$

Решение

Первое действие — умножение элемента поля на матрицу $A.$$$-2\cdot A=-2\cdot \left(\begin{matrix}-2 & -3 & -5 \\-1 & -2 & -8\\ -4& -6 & -1\end{matrix}\right)=\left(\begin{matrix}4 & 6 & 10 \\2 & 4 & 16\\ 8& 12 & 2\end{matrix}\right).$$

Второе действие — умножение полученной матрицы на матрицу $B.$ $$\left(\begin{matrix}4 & 6 & 10 \\2 & 4 & 16\\ 8& 12 & 2\end{matrix}\right)\cdot B=\left(\begin{matrix}4 & 6 & 10 \\2 & 4 & 16\\ 8& 12 & 2\end{matrix}\right)\cdot \left(\begin{matrix}2 & 1 & 10\\7 & 3 & 3\\1&5&4\end{matrix}\right)=$$ $$=\left(\begin{matrix}60 & 72 & 98 \\48 & 94 & 96\\ 102& 54 & 124\end{matrix}\right).$$

Третье действие — умножение полученной матрицы на единичную матрцу соответствующего порядка. Логично, что реультат умножения на единичную матрицу будет равен исходой матрице. $$\left(\begin{matrix}60 & 72 & 98 \\48 & 94 & 96\\ 102& 54 & 124\end{matrix}\right)\cdot \left(\begin{matrix}1 & 0 & 0 \\0 & 1 & 0\\ 0& 0 & 1\end{matrix}\right)=\left(\begin{matrix}60 & 72 & 98 \\48 & 94 & 96\\ 102& 54 & 124\end{matrix}\right).$$

И последнее — складывание полученной матрицы и матрицы $C.$ $$\left(\begin{matrix}60 & 72 & 98 \\48 & 94 & 96\\ 102& 54 & 124\end{matrix}\right)+\left(\begin{matrix}21 & 42 & 4\\-6 & 12 & 9\\14&10&1\end{matrix}\right)=\left(\begin{matrix}81 & 114 & 102 \\42 & 106 & 105\\ 116& 64 & 125\end{matrix}\right).$$ $$D=\left(\begin{matrix}81 & 114 & 102 \\42 & 106 & 105\\ 116& 64 & 125\end{matrix}\right).$$

[свернуть]

Пример 2. Дана матрица $A$. Найти $A^{3},$ $$A=\left(\begin{matrix}2 & 3 & 7 \\1 & 1 & 13\\ 0& 4 & 8\end{matrix}\right).$$

Решение

По определению возведение числа в степень $n$ — умножение числа на себя $n$ раз. Возведение матриц в степень происходит похожим образом. То есть $A^{3}=A\cdot A^{2} = A\cdot A\cdot A.$

Найдем $A^{2}.$ $$A^{2}=A\cdot A=\left(\begin{matrix}2 & 3 & 7 \\1 & 1 & 13\\ 0& 4 & 8\end{matrix}\right)\cdot \left(\begin{matrix}2 & 3 & 7 \\1 & 1 & 13\\ 0& 4 & 8\end{matrix}\right)=\left(\begin{matrix}7 & 37 & 109 \\3 & 56 & 124\\ 4& 36 & 116\end{matrix}\right);$$

Теперь найдем $A^{3}.$ $$A^{3}=A\cdot A^{2}=\left(\begin{matrix}2 & 3 & 7 \\1 & 1 & 13\\ 0& 4 & 8\end{matrix}\right)\cdot \left(\begin{matrix}7 & 37 & 109 \\3 & 56 & 124\\ 4& 36 & 116\end{matrix}\right) =\left(\begin{matrix}51 & 494 & 1402 \\62 & 561 & 1741\\ 44& 512 & 1424\end{matrix}\right).$$

$$A^{3}=\left(\begin{matrix}51 & 494 & 1402 \\62 & 561 & 1741\\ 44& 512 & 1424\end{matrix}\right).$$

[свернуть]

Матрицы. Виды матриц. Равенство матриц. Операции над матрицами

Для закрепления материала предлагается тест:

Литература

  1. Белозеров Г.С. Конспект лекций по линейной алгебре.
  2. Воеводин В.В. Линейная алгебра. М.: Наука, 1980.-400 с., стр. 194-197
  3. Фадеев Д.К. Лекции по алгебре. М.: Наука, 1984.-416 с., стр. 72-80
  4. Проскуряков И.В. Сборник задач по линейной алгебре. М.: Наука, 1984.-384 с., стр. 112-115

Простейшие задачи аналитической геометрии

Простейшие задачи аналитической геометрии заключаются в нахождении координат вектора, его длины, проекций и исследовании их свойств, вычислении угла между двумя векторами и т.п. В основе их решения лежит так называемый метод координат и использование декартовой прямоугольной системы координат. Этот метод состоит в том, что положение точки на плоскости или в пространстве однозначно определяется двумя или тремя координатами соответственно. В нашем случае это позволит определять положение вектора на прямой, плоскости или в пространстве. Все задачи будем рассматривать на примере трехмерного пространства и делать лишь некоторые оговорки для случая с двумерным пространством, т.к. отличия незначительны. Также будем считать, что имеется некоторая фиксированная декартова прямоугольная система координат с началом в точке $O(0, 0, 0).$

Итак, рассмотрим следующие задачи:

  1. Координаты вектора
  2. Координаты проекций вектора на оси координат и координатные плоскости
  3. Расстояние между двумя точками
  4. Угол между двумя векторами
  5. Деление отрезка в заданном соотношении
  6. Ортогональные проекции вектора на прямую и плоскость

Тест на знание темы «Простейшие задачи аналитической геометрии»

Pасстояние между двумя точками

Пусть заданы две точки $B_1\left(\alpha_1, \beta_1, \gamma_1\right)$ и $B_2\left(\alpha_2, \beta_2, \gamma_2\right).$ Попробуем интерпретировать понятие расстояния между двумя точками и изобразить это в трехмерной системе координат, чтобы понять геометрический смысл. Для этого построим параллелепипед, в котором вектор $\overline{B_1B_2}$ будет его главной диагональю.

Принцип проектирования точек на координатные оси показан на данном рисунке на примере точки $B_2.$ Для точки $B_1$ ситуация аналогична. Итак, найдя проекции точек $B_1$ и $B_2,$ мы тем самым нашли проекции вектора $\overline{B_1B_2}.$

Обозначим две вершины параллелепипеда точками $A$ и $C.$ Теперь видно, что вектор $\overline{B_1B_2}$ является гипотенузой прямоугольного треугольника $B_1CB_2,$ для нахождения которой необходимо вычислить длину катетов $B_1C$ и $B_2C.$ Рассмотрим треугольник $B_1AC$ гипотенуза которого является катетом $B_1C$ треугольника $B_1CB_2.$ По теореме Пифагора $B_1C = \sqrt{{AB_1}^2 + {AC}^2}.$ Значит, получаем итоговую формулу: $$B_1B_2 = \sqrt{{B_1C}^2 + {B_2C}^2}.$$ Теперь, подставляя координаты точек $B_1$ и $B_2,$ имеем: $$\rho\left(B_1, C\right) = \sqrt{\left(\alpha_2 — \alpha_1\right)^2 + \left(\beta_2 — \beta_1\right)^2},$$ $$\rho\left(B_1, B_2\right) = \sqrt{\left(\alpha_2 — \alpha_1\right)^2 + \left(\beta_2 — \beta_1\right)^2 + \left(\gamma_2 — \gamma_1\right)^2},$$где за $\rho$ обозначено расстояние между точками. Подобным образом можно вычислить и длину вектора $\overline{B_1B_2}:$ $$\left|\overline{B_1B_2}\right| = \sqrt{\alpha^2 + \beta^2 + \gamma^2},$$ где $\alpha,$ $\beta,$ $\gamma$ координаты вектора. Для плоскости все рассуждения остаются аналогичными, а формулы выглядят следующим образом: $$\rho\left(B_1, B_2\right) = \sqrt{\left(\alpha_2 — \alpha_1\right)^2 + \left(\beta_2 — \beta_1\right)^2},$$ $$\left|\overline{B_1B_2}\right| = \sqrt{\alpha^2 + \beta^2}.$$

Пример

Пусть в пространстве даны две произвольные точки $A_1\left(5, 2, -6\right)$ и $A_2\left(\lambda + 5, -1, -3\right),$ где $\lambda$ — произвольное действительное число. Найти все значения $\lambda,$ при которых расстояние между точками $A_1$ и $A_2$ будет равно $10.$

Решение

По формуле для нахождения расстояния между точками, имеем: $$\sqrt{\left(\lambda + 5 — 5\right)^2 + \left(-1 — 3\right)^2 + \left(-3 + 4\right)^2} = 10.$$ Откуда получаем: $$\sqrt{\lambda^2 + 17} = 10,$$ $$\lambda^2 + 17 = 100,$$ $$\lambda^2 = 83,$$ $$\lambda = \pm\sqrt{83}.$$Ответ: $\lambda = \pm\sqrt{83}.$

[свернуть]

Смотрите также

  1. Воеводин В.В. Линейная алгебра. М.: Наука, 1994, Глава 3, $§$ 25, «Некоторые задачи» (стр. 80-81)
  2. Виноградов И.М. Аналитическая геометрия. М.: Наука, 1986, Глава 6, $§$ 8 «Выражение длины вектора через координаты концов. Расстояние между двумя точками» (стр. 137)
  3. Ефимов Н.В. Краткий курс аналитической геометрии. М.: ФИЗМАТЛИТ, 2005, Глава 7, $§$ 47 «Расстояние между двумя точками» (стр. 133)
  4. Ильин В.А., Позняк Э.Г. Аналитическая геометрия. М.: ФИЗМАТЛИТ, 2004, $§$ 3, пункт 2, «Простейшие задачи аналитической геометрии» (стр. 17)

Деление отрезка в заданном отношении

Пусть в пространстве заданы три точки $B_1\left(\alpha_1, \beta_1, \gamma_1\right),$ $B\left(\alpha, \beta, \gamma\right)$ и $B_2\left(\alpha_2, \beta_2, \gamma_2\right),$ лежащие на одной прямой, причем $B$ не совпадает с $B_2.$ Если определить вектор $\overline{B_1B_2},$ то число $\lambda$ называется отношением, в котором точка $B$ делит $\overline{B_1B_2}.$ Причем, если $\lambda\gt 0,$ точка $B$ лежит между точками $B_1$ и $B_2,$ если $\lambda\lt 0,$ то $B$ находится вне отрезка, а если $\lambda = 0,$ то $B$ совпадает с $B_1.$

Однако задача заключается в нахождении координат точки $B,$ считая число $\lambda$ и координаты точек $B_1,$ $B_2$ известными. Для наглядности изобразим это в трехмерной системе координат и построим проекции точек $B,$ $B_1$ и $B_2$ на ось абсцисс:

Понятно, что проекции точек также определяют соответствующие вектора, поэтому точка, например $B_x,$ делит отрезок $B_{1x}B_{2x}$ также в отношении $\lambda.$ Учитывая формулы первой статьи, найдем координаты полученных векторов: $$\overline{B_{1x}B_x} = \left(\alpha-\alpha_1\right),$$ $$\overline{B_xB_{2x}} = \left(\alpha_2-\alpha\right).$$

Тогда на примере проекций точек на ось абсцисс найдем координаты $B_x:$ $$\alpha = \frac{\alpha_1 +\lambda\alpha_2}{1+\lambda},$$ $$\beta = \frac{\beta_1+\lambda\beta_2}{1+\lambda},$$ $$\gamma = \frac{\gamma_1+\lambda\gamma_2}{1+\lambda}.$$

Для проекций точек на остальные оси формулы аналогичны. В случае плоскости вся разница состоит в том, что точки $B,$ $B_1$ и $B_2$ определяются двумя координатами.

Пример

Точка $L$ лежит на отрезке $MN.$ Известно, что отрезок $ML$ в два раза длиннее отрезка $NL.$ Найти точку $N,$ если $M\left(2, 4, -3\right),$ $L\left(-8, 6, -1\right).$

Решение

Из условия ясно, что точка $L$ делит отрезок $MN$ в отношении $2:1,$ считая от точки $M,$ то есть: $$\lambda = \frac{ML}{NL} = 2.$$ Обозначим координаты точки $N\left(\alpha, \beta, \gamma\right).$ Тогда: $$-8 = \frac{2+2\alpha}{1+2}\Rightarrow2\alpha = -26\Rightarrow\alpha = -12,$$ $$6 = \frac{4+2\beta}{1+2}\Rightarrow2\beta = 14\Rightarrow\beta = 7,$$ $$-1 = \frac{-3+2\gamma}{1+2}\Rightarrow2\gamma = 0\Rightarrow\gamma = 0.$$ Значит, точка $N$ имеет следующие координаты: $$N\left(-12, 7, 0\right).$$

[свернуть]

Смотрите также

  1. Воеводин В.В. Линейная алгебра. М.: Наука, 1994, Глава 3, $§$ 25, «Некоторые задачи» (стр. 82-83)
  2. Виноградов И.М. Аналитическая геометрия. М.: Наука, 1986, Глава 6, $§$ 9 «Деление отрезка в данном отношении» (стр. 137-139)
  3. Ефимов Н.В. Краткий курс аналитической геометрии. М.: ФИЗМАТЛИТ, 2005, Глава 7, $§$ 47 «Деление отрезка в заданном соотношении» (стр. 134)
  4. Ильин В.А., Позняк Э.Г. Аналитическая геометрия. М.: ФИЗМАТЛИТ, 2004, $§$ 3, пункт 3, «Деление отрезка в данном отношении» (стр. 17)

Ортогональные проекции вектора на прямую и плоскость

Зададим в трехмерной декартовой прямоугольной системе координат две точки $B_1$ и $B_2,$ определяющие вектор $\overline{B_1B_2}\left(\alpha_1, \beta_1, \gamma_1\right).$ Опустим из них перпендикуляры на плоскость $xy$ и получим точки $B_{1xy}$ и $B_{2xy}:$

Заметим, что прямые $B_1B_{1xy}$ и $B_2B_{2xy}$ параллельны оси аппликат, которая в свою очередь перпендикулярна плоскости $xy.$ Поэтому тот факт, что мы работаем именно в прямоугольной декартовой системе очень важен, так как в противном случае проекции не будут ортогональными. Итак, точки $B_{1xy}$ и $B_{2xy}$ определяют вектор $\overline{B_{1xy}B_{2xy}},$ который является ортогональной проекцией $\overline{B_1B_2}$ на плоскость $xy.$ Обозначим его следующим образом: $$\overline{B_{1xy}B_{2xy}} = pr_{xy}\overline{B_1B_2}.$$

Рассмотрим некоторые свойства проекций. Для этого возьмем еще один произвольный вектор $\overline{A_1A_2}\left(\alpha_2, \beta_2, \gamma_2\right)$ и для векторов $\overline{B_1B_2}$ и $\overline{A_1A_2}$ определим операции сложения и умножения на константу: $$\overline{B_1B_2}+\overline{A_1A_2} = \left(\alpha_1+\alpha_2, \beta_1+\beta_2, \gamma_1+\gamma_2\right),$$ $$\lambda\overline{B_1B_2} = \left(\lambda\alpha_1, \lambda\beta_1, \lambda\gamma_1\right),$$ $$\lambda\overline{A_1A_2} = \left(\lambda\alpha_2, \lambda\beta_2, \lambda\gamma_2\right).$$

Используя материалы второй статьи, найдем координаты проекций векторов на плоскость $xy:$ $$pr_{xy}\overline{B_1B_2} = \left(\alpha_1, \beta_1, 0\right),$$ $$pr_{xy}\overline{A_1A_2} = \left(\alpha_2, \beta_2, 0\right).$$

Тогда можно описать следующие свойства: $$pr_{xy}\left(\overline{B_1B_2}+\overline{A_1A_2}\right) = pr_{xy}\overline{B_1B_2}+pr_{xy}\overline{A_1A_2} = \left(\alpha_1+\alpha_2, \beta_1+\beta_2, 0\right),$$ $$pr_{xy}\left(\lambda\overline{B_1B_2}\right) = \lambda pr_{xy}\left(\overline{B_1B_2}\right) = \left(\lambda\alpha_1, \lambda\beta_1, 0\right),$$ $$pr_{xy}\left(\lambda\overline{A_1A_2}\right) = \lambda pr_{xy}\left(\overline{A_1A_2}\right) = \left(\lambda\alpha_2, \lambda\beta_2, 0\right).$$

При построении проекции вектора на координатную ось, все рассуждения остаются аналогичными.

Пример

Найти отношение длин вектора $\overline{AB}\left(8, -5, -2\right)$ и его ортогональной проекции на плоскость $yz.$

Решение

Найдем длину вектора $\overline{AB}:$ $$\left|\overline{AB}\right| = \sqrt{64+25+4} = \sqrt{93}.$$ Ортогональная проекция этого вектора имеет следующие координаты: $$pr_{yz}\left(\overline{AB}\right) = \left(0, -5, -2\right).$$ Найдем длину проекции: $$\left|pr_{yz}\left(\overline{AB}\right)\right| = \sqrt{25+4} = \sqrt{29}.$$ Имеем: $$\frac{\left|\overline{AB}\right|}{\left|pr_{yz}\left(\overline{AB}\right)\right|} = \frac{\sqrt{93}}{\sqrt{29}}.$$

[свернуть]

Смотрите также

  1. Воеводин В.В. Линейная алгебра. М.: Наука, 1994, Глава 3, $§$ 25, «Некоторые задачи» (стр. 83-85)
  2. Ильин В.А., Позняк Э.Г. Аналитическая геометрия. М.: ФИЗМАТЛИТ, 2004, $§$ 3, пункт 1, «Понятие направленного отрезка в пространстве. Проекция направленного отрезка на ось» (стр. 17)