В тетраэдре $ABCD$ $(AC) \bot (BC)$ и $(AD) \bot (BD)$. Докажите, что косинус угла между прямыми $AC$ и $BD$ меньше, чем $|CD| / |AB|$.
Решение
Проведем $(BE) \parallel (CA)$ и $(AE) \parallel (CB)$ (см. рисунок). Косинус угла между прямыми $AC$ и $BD$ — это $|\cos \widehat {DBE}|$.
С другой стороны, четырехугольник $ACBE$ — это прямоугольник, поэтому $|AB| = |CE|$ и $|CD| / |AB| = |CD| / |CE|$.
Заметим, что вершины прямых углов $ACB$, $ADB$, $AEB$ лежит на сфере с диаметром $AB$. Отрезок $CE$ тоже является диаметром этой сферы, поэтому угол $CDE$ — прямой и $|CD| / |CE| = \cos \widehat {DCE}$. Нужное неравенство принимает теперь вид $|\cos \widehat {DBE}| \lt \cos \widehat {DCE}$.
Пусть $R$ — это радиус сферы и $r$ — радиус окружности, получающийся в сечении сферы плоскостью $BDE$. Так как эта плоскость не проходит через центр сферы, $r \lt R$ и из равенств $2r \cdot \sin \widehat {DBE} = |DE| = 2R \cdot \sin \widehat {DCE}$ получаем $\sin \widehat {DBE} \gt \sin \widehat {DCE}$. Значит, $|\cos \widehat {DBE}| \lt |\cos \widehat {DCE}| = \cos \widehat {DCE}$.
Дан четырехугольник $ABCD$ площади $S$. Обозначим точки пересечения высот треугольников $ABC$, $BCD$, $CDA$, $DAB$ через $H,$ $K,$ $L,$ $M$ соответственно. Докажите, что площадь четырехугольника $HKLM$ тоже равна $S$.
Решение
Самое простое аналитическое решение этой задачи получается с помощью операции псевдоскалярного произведения векторов: $\vec{a}\wedge\vec{b}=\mid\vec{a}\mid\mid\vec{b}\mid\sin\phi$, где $\phi$ — угол, на который нужно повернуть вектор $\vec{a}$ против часовой стрелки, чтобы его направление совпало с направлением вектора $\vec{b}$. Геометрический смысл числа $\vec{a}\wedge\vec{b}$ — ориентированная, площадь параллелограмма, построенного на векторах $\vec{a}$ и $\vec{b}$ (рис. 1). Нужные нам свойства:
Рис. 1.а. $\vec{a}\wedge\vec{b} =2S_{\triangle AOB}$, если $\triangle AOB$ ориентирован положительно— против часовой стрелки.
Рис.1.б. $\vec{a}\wedge\vec{b} =-2S_{\triangle AOB}$, если $\triangle AOB$ ориентирован отрицательно
$\vec{a}\wedge\vec{b}=0$, если векторы $\vec{a}$ и $\vec{b}$ коллинеарны. Следуют из того, что $\vec{a}\wedge\vec{b}$ равно скалярному произведению вскторов $\vec{b}$ и $R^{90^{\circ}}(\vec{a})$.
Удобно ввести «симметричные» обозначения: пусть $A_{1}A_{2}A_{3}A_{4}$ — данный четырехугольник, $H_{1}, H_{2}, H_{3} и H_{4}$ — точки пересечений высот треугольников $A_{2}A_{3}A_{4}, A_{3}A_{4}A_{1}$, $A_{4}A_{1}A_{2}$ и $A_{1}A_{2}A_{3}$, соответственно, а $\vec{a_{i}}$ и $\vec{h_{i}}$ — векторы, идущие из фиксированной точки $O$ в $A_{i}$ и $H_{i}$ $(i= 1, 2, 3, 4)$.
Докажем, что треугольники $A_{1}A_{2}A_{3}$ и $H_{1}H_{2}H_{3}$ равновелики (имеют одинаковую площадь) и одинаково ориентированы. Поскольку удвоенная площадь $\triangle$$A_{1}A_{2}A_{3}$ (с учётом ориентации) равна $\overrightarrow{A_{1}A_{2}}\wedge\overrightarrow{A_{1}A_{3}}=(\vec{a_{2}}-\vec{a_{1}})\wedge(\vec{a_{3}}-\vec{a_{1}})=\vec{a_{1}}\wedge\vec{a_{2}}+\vec{a_{2}}\wedge\vec{a_{3}}+\vec{a_{3}}\wedge\vec{a_{1}},$ мы должны доказать равенство \begin{equation} \label{eq:first} \vec{a_{1}}\wedge\vec{a_{2}}+\vec{a_{2}}\wedge\vec{a_{3}}+\vec{a_{3}}\wedge\vec{a_{1}}=\vec{h_{1}}\wedge\vec{h_{2}}+\vec{h_{2}}\wedge\vec{h_{3}}+\vec{h_{3}}\wedge\vec{h_{1}}.\end{equation} Для этого мы используем лишь тот факт, что $\left[A_{i}H_{j}\right]\parallel\left[A_{j}H_{i}\right]$ при всех $i \neq j$. Скажем, $\left[A_{1}H_{2}\right]\parallel\left[A_{2}H_{1}\right]$, поскольку они перпендикулярны $ \left[A_{3}A_{4}\right] $; поэтому $(\vec{a_{1}}-\vec{h_{2}})\wedge(\vec{a_{2}}-\vec{h_{1}})=0$ Сложив три равенства:$$\vec{a_{1}}\wedge\vec{a_{2}}-\vec{h_{1}}\wedge\vec{h_{2}}=\vec{a_{1}}\wedge\vec{h_{1}}-\vec{a_{2}}\wedge\vec{h_{2}}.$$ $$\vec{a_{2}}\wedge\vec{a_{3}}-\vec{h_{2}}\wedge\vec{h_{3}}=\vec{a_{2}}\wedge\vec{h_{2}}-\vec{a_{3}}\wedge\vec{h_{3}}$$ $$\vec{a_{3}}\wedge\vec{a_{1}}-\vec{h_{3}}\wedge\vec{h_{1}}=\vec{a_{3}}\wedge\vec{h_{3}}-\vec{a_{3}}\wedge\vec{h_{1}}$$
получим $\eqref{eq:first}$.
Разумеется, так же доказывается вообще, что треугольники $A_{i}A_{j}A_{k}$ и $H_{i}H_{j}H_{k}$, равновелики и одинаково ориентированы (для всех $i \neq j \neq k$ ); в частности, это относится к треугольникам $A_{3}A_{4}A_{1}$ и $H_{3}H_{4}H_{1}$. Отсюда, следует равенство площадей четырехугольников $A_{1}A_{2}A_{3}A_{4}$ и $H_{1}H_{2}H_{3}H_{4}$.
Более того, оба эти четырёхугольника будут одновременно либо (а) выпуклыми, либо (б) невыпуклыми, но несамопересекающимися, либо (в) самопересекающимися: если все четыре треугольника $A_{1}A_{2}A_{3}, A_{2}A_{3}A_{4}, A_{3}A_{4}A_{1}, A_{4}A_{1}A_{2}$ имеют одинаковую ориентацию, то (а), если один отличается по ориентации от трех других — (б); если «счет ничейный» 2:2 — (в).
Если бы мы попытались перевести это решение на элементарно геометрический язык, получилась бы громоздкая картина из множеств параллелограммов, очевидные соотношения между площадями которых запутаны из-за особенностей расположения. Более элегантное геометрическое решение (требующее, однако, некоторых вычислений: в частности оно использует формулу $\tan\alpha+\tan\beta=(1-\tan\alpha\tan\beta){\tan(\alpha+\beta)})$ основано на полезных соотношениях, показанных на рисунке 2, где $H$ — точка пересечения высот треугольника $ABC$. $O$ — центр описанной вокруг него окружности, $K$ — середина стороны $AB$).
На этом пути сразу ясно, что для четырёхугольника $A_{1}A_{2}A_{3}A_{4}$, вписанного в окружность, «ортоцентрический» четырёхугольник $H_{1}H_{2}H_{3}H_{4}$ будет ему не только равновелик, но и конгруэнтен (в общем случае, как следует из равенства, площадей треугольников $A_{i}A_{j}A_{k}$ и $H_{i}H_{j}H_{k}$ эти четырёхугольники аффинно эквивалентны, то есть один получается из другого линейным преобразованием координат).
На сторонах $BC, AC, AB$ остроугольного треугольника $ABC$ взяты точки $A_1, B_1, C_1$ соответственно. Известно, что центр описанной окружности совпадает с точкой пересечения высот треугольника $ABC$ окружности совпадают с точкой пересечения высот треугольника $A_1B_1C_1$. Докажите что треугольники $ABC$ и $A_1B _1C _1$ подобны.
Решение
Пусть $A_0,B_0,C_0$ -середины сторон треугольника $ABC$. $O$ центр описанной около него окружности. Треугольник $A_0B_0C_0$ подобен треугольнику $ABC$, а точка $O$ является точкой пересечения его высот.
Рассмотрим преобразования подобнo $F=H_O^k*R_O^k$ где $k= \frac{1}{\cos(α)}$. При этом точки $F(A_0), F(B_0)$ и $F(C_0)$ будут принадлежать прямым $BC, AC,$ и $AB$ соответственно. Таким образом, при изменение $α$ мы получаем целое семейство треугольников с общим ортоцентром, вписанных в треугольник $ABC$ и ему подобных. Осталось показать, что треугольник $A_1B_1C_1$ принадлежит этому семейству.
Выберем $α= ∠B_0OB_1$ так, что $F(B_0)=B_1$; пусть $F(A_0)=A_2, F(C_0)=C_2$ Точка $O$ служит пересечением высот треугольников $A_1B_1C_1$ и $ F(A_0B_0C_0)= A_2B_1C_2$; значит, сторона $A_2C_2$ должна быть параллельна стороне $A_1C_1$ или совпадать с ней. Но ясно, что высота треугольника $A_2B_1C_2$, опущенные из вершины $A_2$ и $C_2$, не могут пройти через $O$, за исключением того случая, когда $A_1B_1C_1$ и $A_2B_1C_2$ совпадают.
В заключение заметим, что в это решение остроугольность $ABC$ не использовалась; утверждение верно для любого треугольника $ABC$, и любых точек $A_1,B_1,C_1$ и на прямых $BC,AC,AB$.
Полукруг с диаметром $AB$ разрезан отрезком $CD$, перпендикулярным $AB,$ на два криволинейных треугольника $ACD$ и $BCD$, в которые вписаны окружности, касающиеся $AB$ в точках $E$ и $F$. Докажите, что а) $|AD| = |AF|$, б) $|DF|$ — биссектриса угла $BDC$, в) величина угла $EDF$ не зависит от выбора точки $C$ на $AB$.
Решение
а) Пусть $O$ — центр данного полукруга. Будем считать, что $|AO| = 1$. Пусть, для определенности, точка $C$ лежит между $B$ и $O$ и $|OC| = a$ (см. рисунок).
Применяя теорему Пифагора к треугольникам $ADC$ и $ODC$, получаем $|AD|^2 — |AC|^2 = |OD|^2 — |OC|^2$, то есть $|AD|^2 =$ $= |AC|^2 + |OD|^2 — |OC|^2$, или $|AD|^2 = (1 + a)^2 + 1 — a^2 =$ $= 2 + 2a$.
Пусть $O_1$ — центр окружности, вписанной в криволинейный треугольник $BDC$, $r$ — её радиус. Из прямоугольного треугольника $OO_1F$ находим $(1 — r)^2 = r^2 + (a + r)^2$, или $(a + r)^2 + 2r = 1$. Поскольку $|AF|^2 = (1 + a + r)^2 = 1 + 2a + 2r + (a + r)^2 = 2 + 2a$, получаем $|AF| = |AD|$. (Аналогично доказывается $|BD| = |BE|$.)
б) Треугольник $ADF$ — равнобедренный, так что $\widehat{AFD} = \widehat{ADF}$. Далее, $\widehat{AFD} = \widehat{BDF} + \widehat{DBF}$, $\widehat{ADF} = \widehat{ADC} + \widehat{CDF}$ и $\widehat{ADC} = $ $= \widehat{DBF}$; поэтому $\widehat{CDF} = \widehat{BDF}.$
в) из решения пункта б) следует, что $\widehat{EDF} = \widehat{EDC} + \widehat{CDF} = $ $ = \displaystyle{1\over 2}\widehat{ADB} = \displaystyle{\pi\over 4}$.
На столе лежат $ 5 $ часов со стрелками. Разрешается любые из них перевести вперед. Для каждых часов время, на которое при этом их перевели, назовем временем перевода. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное время перевода это можно гарантированно сделать?
Решение
Ответ: за $ 24 $ часа.
Отметим на циферблате положения часов стрелок всех пяти часов (см. рисунок). Циферблат разобьется на пять секторов. Занумеруем их по кругу. Пусть часовая стрелка проходит секторы за $ x_1, x_2, x_3, x_4, x_5 $ часов соответственно. (Некоторые из этих чисел, нулевые; сумма $ x_1 + x_2 + x_3 + x_4 + x_5 $ равна $ 12 $ часам.)
Чтобы перевести все часы на начало первого сектора, необходимо затратить \begin{align*} & S_1 = (x_2 + x_3 + x_4 + x_5) + (x_3 + x_4 + x_5) + \\ & + (x_4 + x_5) + x_5 = x_2 + 2x_3 + 3x_4 + 4x_5 \end{align*} часов. Аналогично можно посчитать величины $ S_2, S_3, S_4 $ и $ S_5 $, где $ S_i $ — время, необходимое для установки всех часов на начало $ i $-го сектора. Следовательно, \begin{align*} & S_1 + S_2 + S_3 + S_4 + S_5 = (1 + 2 + 3 + 4) \times \\ & \times (x_1 + x_2 + x_3 + x_4 + x_5) = 10 \cdot 12 = 120 \end{align*} часов; наименьшая из величин $ S_i $ не превосходит $ 120 : 5 = 24 $ часа.
С другой стороны, если $ x_1 = x_2 = x_3 = x_4 = x_5 $ (например, если часы показывают $12$ ч, $2$ ч $24$ мин, $4$ ч $48$ мин, $7$ ч $12$ мин и $9$ ч $36$ мин), то все $ S_i $ равны $24$ часам. Менее чем $24$ часами в такой ситуацией не обойтись.