M674. Геометрическая задача

Задача из журнала «Квант» (1981 № 3)

Условие

На сторонах $BC, AC, AB$ остроугольного треугольника $ABC$ взяты точки $A_1, B_1, C_1$ соответственно. Известно, что центр описанной окружности совпадает с точкой пересечения высот треугольника $ABC$ окружности совпадают с точкой пересечения высот треугольника $A_1B_1C_1$. Докажите что треугольники $ABC$ и $A_1B _1C _1$ подобны.

Решение

Пусть $A_0,B_0,C_0$ -середины сторон треугольника $ABC$. $O$ центр описанной около него окружности. Треугольник $A_0B_0C_0$ подобен треугольнику $ABC$, а точка $O$ является точкой пересечения его высот.

Рассмотрим преобразования подобнo $F=H_O^k*R_O^k$ где $k= \frac{1}{\cos(α)}$. При этом точки $F(A_0), F(B_0)$ и $F(C_0)$ будут принадлежать прямым $BC, AC,$ и $AB$ соответственно. Таким образом, при изменение $α$ мы получаем целое семейство треугольников с общим ортоцентром, вписанных в треугольник $ABC$ и ему подобных. Осталось показать, что треугольник $A_1B_1C_1$ принадлежит этому семейству.

Выберем $α= ∠B_0OB_1$ так, что $F(B_0)=B_1$; пусть $F(A_0)=A_2, F(C_0)=C_2$ Точка $O$ служит пересечением высот треугольников $A_1B_1C_1$ и $ F(A_0B_0C_0)= A_2B_1C_2$; значит, сторона $A_2C_2$ должна быть параллельна стороне $A_1C_1$ или совпадать с ней. Но ясно, что высота треугольника $A_2B_1C_2$, опущенные из вершины $A_2$ и $C_2$, не могут пройти через $O$, за исключением того случая, когда $A_1B_1C_1$ и $A_2B_1C_2$ совпадают.

В заключение заметим, что в это решение остроугольность $ABC$ не использовалась; утверждение верно для любого треугольника $ABC$, и любых точек $A_1,B_1,C_1$ и на прямых $BC,AC,AB$.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *