4.2 Определение и примеры непрерывных функций

Определение. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 \in (a, b)$. Говорят, что функция $f$ непрерывна в точке $x_0$, если
$$\lim_{x \to x_0} f(x) = f (x_0).$$

Замечание. В отличие от определения предела функции $f$ в точке $x_0$, здесь мы требуем, чтобы функция $f$ была определена не только в проколотой окрестности точки $x_0$, а в целой окрестности точки $x_0$. Кроме того, $\displaystyle \lim_{x \to x_0} f(x)$ не просто существует, а равен определенному значению, а именно, $f(x_0)$.

Используя определение предела функции в смысле Коши, определение непрерывности функции $f$ в точке $x_0$ в кванторах можно записать следующим образом:
$$\forall \varepsilon > 0 \space \exists \delta = \delta (\varepsilon) > 0 : \forall x \in (a, b) : |x−x_0| < \delta \Rightarrow \\ \Rightarrow |f(x)−f(x_0)| < \varepsilon.$$
В этом определении можно не требовать выполнения условия $|x−x_0| > 0$, т. к. при $|x−x_0| = 0$ неравенство $|f(x)−f(x_0)| < \varepsilon$, очевидно, выполнено.

Так как величина $\displaystyle \lim_{x \to x_0} f(x)$ зависит лишь от тех значений, которые функция $f$ принимает в сколь угодно малой окрестности точки $x_0$, то непрерывность — это локальное свойство функции.

В терминах окрестностей определение непрерывности выглядит следующим образом.

Определение. Функция $f$ называется непрерывной в точке $x_0$, если для любой окрестности $V$ точки $f(x_0)$ найдется такая окрестность $U$ точки $x_0$, что для всех $x \in U$ значение $f(x) \in V$ , т. е. $f(U \cap (a, b)) \subset V$.

Применяя определение предела функции в смысле Гейне, определение непрерывности можно сформулировать так.

Определение. Функция $f$, определенная на интервале $(a, b)$, называется непрерывной в точке $x_0 \in (a, b)$, если любая последовательность аргументов $\{x_n\} \space (x_n \in (a, b), x_n \to x_0)$ порождает последовательность значений функции $\{f(x_n)\}$, стремящуюся к $f(x_0)$.

Применяя понятие одностороннего предела (т. е. предела слева и справа) в точке $x_0$, можно дать определения непрерывности слева (справа) в точке $x_0$. Именно, функция $f$ называется непрерывной слева (справа) в точке $x_0$, если $\displaystyle \lim_{x \to x_0−0} f(x) = f(x_0) (\lim_{x \to x_0+0} f(x) = f(x_0))$. При этом в определении непрерывности слева достаточно считать, что функция $f$ определена лишь в левой полуокрестности точки $x_0$, т. е. на $(a, x_0]$, а для непрерывности справа — на $[x_0, b)$.

Легко видеть, что справедливо следующее

Утверждение. Для того, чтобы функция $f$ была непрерывной в точке $x_0$, необходимо и достаточно, чтобы $f$ была непрерывной слева и справа в точке $x_0$.

Определение. Функция $f$, определенная на интервале $(a, b)$, называется разрывной в точке $x_0 \in (a, b)$, если $f$ не является непрерывной в этой точке.

Итак, функция $f$ является разрывной в точке $x_0$, если выполнено одно из двух следующих условий.

1. Либо не существует $\displaystyle \lim_{x \to x_0} f(x)$.

2. Либо предел $\displaystyle \lim_{x \to x_0} f(x)$ существует, но он не равен $f(x_0)$.

Пример 1. $f(x) \equiv C = Const$. Эта функция непрерывна в каждой точке $x_0 \in \mathbb{R}$, т. к. для любого $x \in \mathbb{R} \space |f(x)−f(x_0)| = 0$.

Пример 2. $f(x) = x^2, −\infty < x < +\infty, x_0 \in \mathbb{R}$. Зададим $\varepsilon > 0$. Тогда из неравенства
$$|x^2-x_0^2| \leq (|x|+|x_0|)|x-x_0|$$
следует, что при $|x−x_0| < \delta = \min{\Bigr(1, \frac{\varepsilon}{2|x_0|+1}\Bigl)}$ справедливо неравенство $|x^2-x_0^2| < \varepsilon$, т. е. $\displaystyle \lim_{x \to x_0} x^2 = x_0^2$, а значит, функция $f(x) = x^2$ непрерывна в любой точке $x_0 \in \mathbb{R}$.

Пример 3. $f(x) = \sqrt{x}, \space 0 \leq x < +\infty$. Если $x_0 \in (0, +\infty)$, то
$$|\sqrt{x}-\sqrt{x_0}| = \frac{|x-x_0|}{\sqrt{x}+\sqrt{x_0}} \leq \frac{1}{\sqrt{x_0}} |x-x_0| < \varepsilon,$$
если только $|x-x_0| < \delta \equiv \sqrt{x_0} \cdot \varepsilon$. Таким образом, функция $f(x) = \sqrt{x}$ непрерывна в каждой точке $x_0 > 0$. В точке $x_0 = 0$ можно ставить вопрос о непрерывности справа. Имеем $|\sqrt{x}-\sqrt{0}| = \sqrt{x} < \varepsilon \space$, если только $0 \leq x < \delta \equiv \varepsilon^2$. Итак, $\displaystyle \lim_{x \to 0+} \sqrt{x} = 0 = \sqrt{0}$, т. е. функция $f(x) = \sqrt{x}$ непрерывна справа в точке $0$.

Пример 4. $f(x)=\sin{x}, -\infty < x < +\infty$. Пусть $x_0 \in \mathbb{R}$. Тогда
$$|\sin{x}−\sin{x_0}| = \Bigg|2\cos{\frac{x+x_0}{2}}\sin{\frac{x-x_0}{2}}\Bigg| \leq \\ \leq 2\Bigg|\sin{\frac{x-x_0}{2}}\Bigg| \leq |x−x_0|,$$
где последнее неравенство в этой цепочке следует из доказанного выше неравенства $|\sin{t}| \leq |t| \space (0 < |t| < \pi/2)$. Можем считать, что $|x−x_0| < \pi$. Тогда при $|x−x_0| < \delta \equiv \min{(\pi, \varepsilon)}$ справедливо $|\sin{x}−\sin{x_0}| < \varepsilon$, т. е. функция $f(x) = \sin{x}$ непрерывна в каждой точке $x_0 \in \mathbb{R}$.

Аналогично доказываем, что функция $f(x) = \cos{x}$ непрерывна в каждой точке $x_0 \in \mathbb{R}$.

Пример 5. $f(x) = x \cdot \sin{\frac{1}{x}}$ при $x \neq 0$ и $f(0) = 0$. Покажем, что функция $f$ непрерывна в точке $x_0= 0$. Имеем $f(0) = 0$ и
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x \sin{\frac{1}{x}} = 0$$
(т. к. $|f(x)−0| = |x \sin{\frac{1}{x}}| \leq |x| < \varepsilon$, если только $|x−0| = |x| < \delta \equiv \varepsilon$). Итак, $\displaystyle \lim_{x \to 0} f(x) = f(0)$, так что $f$ непрерывна в точке $0$.

Пример 6. $f(x) = \operatorname{sign} x, x \in R$. Если $x_0 \neq 0$, то функция $f$ постоянна в некоторой окрестности точки $x_0$ и, следовательно, непрерывна в этой точке. Если же $x_0 = 0$, то не существует предела функции $f$ при $x \to 0$. Значит, функция $f$ разрывна в точке $0$. Более того, $\displaystyle \lim_{x \to 0+} \operatorname{sign} x = 1, \lim_{x \to 0−} \operatorname{sign} x = −1, \operatorname{sign} 0 = 0$, так что функция $\operatorname{sign} x$ разрывна в точке $0$ как слева, так и справа.

Пример 7. Рассмотрим функцию Дирихле
$$\begin{equation*}D(x) = \begin{cases} 1, \quad x \in \mathbb{Q}, \\ 0, \quad x \in \mathbb{R \setminus Q}. \end{cases} \end{equation*}$$
Пусть $x_0 \in \mathbb{R}$. Покажем, что не существует предела функции $D$ при $x \to x_0$. Для этого выберем последовательность $\{x^\prime_n\}$ отличных от $x_0$ рациональных чисел, стремящуюся к $x_0$. Тогда $D(x^\prime_n) = 1$ и, значит, $\displaystyle \lim_{n \to \infty} D(x^\prime_n) = 1$. Если же взять последовательность $\{x^{\prime\prime}_n\}$, отличных от $x_0$ иррациональных чисел, стремящуюся к $x_0$, то получим, что $D(x^{\prime\prime}_n) = 0$ и $\displaystyle \lim_{n \to \infty} D(x^{\prime\prime}_n) = 0$. В силу определения предела функции по Гейне получаем, что функция $D$ не имеет предела в точке $x_0$. Так как $x_0 \in \mathbb{R}$ — произвольная точка, то это означает, что функция Дирихле разрывна в каждой точке.

Пример 8. $f(x) = x \cdot D(x), \space x \in \mathbb{R}$. Функция $f$ разрывна в каждой точке $x_0 \neq 0$. В самом деле, если $\{x^\prime_n\}$ и $\{x^{\prime\prime}_n\}$ соответственно последовательности рациональных и иррациональных отличных от $x_0$ чисел, стремящиеся к $x_0$, то $\displaystyle \lim_{n \to \infty} f(x^\prime_n) = 0$ и $\displaystyle \lim_{n \to \infty} f(x^{\prime\prime}_n) = 0$, так что, в силу определения предела функции по Гейне, функция $f$ не имеет предела в точке $x_0$. Если же $x_0 = 0$, то $\displaystyle \lim_{x \to 0} f(x) = 0 = f(0)$. Действительно, $|f(x)| = |x \cdot D(x)| \leq |x| < \varepsilon$, если только $|x−0| = |x| < \delta \equiv \varepsilon$. Это означает, что данная функция непрерывна в единственной точке $x_0 = 0$.

Примеры решения задач

Пусть функция $f$ определена в окрестности точки $x_0$, кроме самой точки $x_0$. Доопределить функцию $f$, задав $f(x_0)$ так, чтобы получившаяся функция была непрерывна в точке $x_0$, если:

  1. $\displaystyle f(x) = \frac{x^2-1}{x+1}, \space x_0 = -1$.

    Решение

    $$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{(x-1)(x+1)}{x+1} = \lim_{x \to -1} (x-1) = -2$$
    Таким образом, положим $\displaystyle f(-1) = \lim_{x \to -1} f(x) = -2$. Значит, функция непрерывна в точке $x_0 = -1$.

  2. $\displaystyle f(x) = \frac{\sqrt{1+x}-1}{x}, \space x_0 = 0$.

    Решение

    Воспользовавшись таблицей эквивалентных, получим:
    $$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{(1+x)^{\frac{1}{2}}-1}{x} \backsim \lim_{x \to 0} \frac{\frac{1}{2}x}{x} = \frac{1}{2}$$
    Таким образом, положим $\displaystyle f(0) = \lim_{x \to 0} f(x) = \frac{1}{2}$. Значит, функция непрерывна в точке $x_0 = 0$.

  3. $\displaystyle f(x) = x\cot{x}, \space x_0 = 0$.

    Решение

    Воспользовавшись таблицей эквивалентных, получим:
    $$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} x\frac{\cos{x}}{\sin{x}} \backsim \lim_{x \to 0} x\frac{\cos{x}}{x} = 1$$
    Таким образом, положим $\displaystyle f(0) = \lim_{x \to 0} f(x) = 1$. Значит, функция непрерывна в точке $x_0 = 0$.

Непрерывные функции

Проверьте, насколько хорошо вы усвоили эту тему и закрепите свои знания по ней, пройдя тест.

М1653. Часы

Задачa из журнала «Квант» (1998 год, 5 выпуск)

Условие

На столе лежат $ 5 $ часов со стрелками. Разрешается любые из них перевести вперед. Для каждых часов время, на которое при этом их перевели, назовем временем перевода. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное время перевода это можно гарантированно сделать?

Решение

Ответ: за $ 24 $ часа.

Отметим на циферблате положения часов стрелок всех пяти часов (см. рисунок). Циферблат разобьется на пять секторов. Занумеруем их по кругу. Пусть часовая стрелка проходит секторы за $ x_1, x_2, x_3, x_4, x_5 $ часов соответственно. (Некоторые из этих чисел, нулевые; сумма $ x_1 + x_2 + x_3 + x_4 + x_5 $ равна $ 12 $ часам.)

Чтобы перевести все часы на начало первого сектора, необходимо затратить \begin{align*} & S_1 = (x_2 + x_3 + x_4 + x_5) + (x_3 + x_4 + x_5) + \\ & + (x_4 + x_5) + x_5 = x_2 + 2x_3 + 3x_4 + 4x_5 \end{align*} часов. Аналогично можно посчитать величины $ S_2, S_3, S_4 $ и $ S_5 $, где $ S_i $ — время, необходимое для установки всех часов на начало $ i $-го сектора. Следовательно, \begin{align*} & S_1 + S_2 + S_3 + S_4 + S_5 = (1 + 2 + 3 + 4) \times \\ & \times (x_1 + x_2 + x_3 + x_4 + x_5) = 10 \cdot 12 = 120 \end{align*} часов; наименьшая из величин $ S_i $ не превосходит $ 120 : 5 = 24 $ часа.

С другой стороны, если $ x_1 = x_2 = x_3 = x_4 = x_5 $ (например, если часы показывают $12$ ч, $2$ ч $24$ мин, $4$ ч $48$ мин, $7$ ч $12$ мин и $9$ ч $36$ мин), то все $ S_i $ равны $24$ часам. Менее чем $24$ часами в такой ситуацией не обойтись.

О.Подлипский