М1821. Доказать неравенство

Задача из журнала «Квант» (2002 год, 3 выпуск)

Условие

Для любого натурального [latex]{n}[/latex] докажите неравенство
$$\left|\left\{\frac n1\right\}-\left\{\frac
n2\right\}+\left\{\frac n3\right\}-\ldots+(-1)^n\left\{\frac
nn\right\} \right|<\sqrt{2n}.$$

([latex]\left \{ a \right \}[/latex] — дробная часть числа [latex]a[/latex])

Доказательство

Неравенство верно для [latex]{n = 1}[/latex] или [latex]{2}[/latex], поэтому пусть [latex]{n \geqslant 3}[/latex]. Рассмотрим число [latex]{k = \left [ \sqrt{2n} \right ]+1}[/latex] и оценим по отдельности величины

$$
A=\left\{\frac{n}{1}\right\}-\left\{\frac{n}{2}\right\}+\left\{\frac{n}{3}\right\}-\ldots-(-1)^{k-1}\left\{\frac{n}{k-1}\right\} \\
$$
и
$$
B=\left\{\frac{n}{k}\right\}-\left\{\frac{n}{k+1}\right\}+\ldots+(-1)^{n-k}\left\{\frac{n}{n}\right\} \\
$$
Очевидно,
$$
A \leqslant\left\{\frac{n}{1}\right\}+\left\{\frac{n}{3}\right\}+\ldots,
$$
где всего [latex]\left [ \frac{k}{2} \right ][/latex] слагаемых, причём первое из них равно 0. Далее,
$$
A \geqslant-\left\{\frac{n}{2}\right\}-\left\{\frac{n}{4}\right\}-\ldots,
$$
где слагаемых [latex]\left [ \frac{k-1}{2} \right ][/latex] штук. Поскольку для любого натурального [latex]m < k[/latex] имеем
$$
\left\{\frac{n}{m}\right\} \leqslant \frac{m-1}{m} \leqslant \frac{k-2}{k-1},
$$
то
$$
|A| \leqslant\left[\frac{k-1}{2}\right] \cdot \frac{k-2}{k-1} \leqslant \frac{k-2}{2}
$$
Поскольку дробная часть — это разность самого числа и его целой части, то
$$
B = C-D,
$$
где
$$
C=\frac{n}{k}-\frac{n}{k+1}+\ldots+(-1)^{n-k} \frac{n}{n}
$$
и
$$
D=\left[\frac{n}{k}\right]-\left[\frac{n}{k+1}\right]+\ldots+(-1)^{n-k}\left[\frac{n}{n}\right].
$$
Поскольку
$$
0 \leqslant\left(\frac{n}{k}-\frac{n}{k+1}\right)+\left(\frac{n}{k+2}-\frac{n}{k+3}\right)+\ldots=C=\frac{n}{k}-\left(\frac{n}{k+1}-\frac{n}{k+2}\right)-\dots \leqslant \frac{n}{k},
$$
то [latex]0\leqslant C \leqslant\frac{n}{k}[/latex] Аналогично, [latex]0\leqslant D\leqslant\left [\frac{n}{k} \right ] \leqslant\frac{n}{k}.[/latex] Следовательно,
$$
|B| = |C-D|\leqslant\frac{n}{k}
$$
и, наконец,
$$
\left|\left\{\frac{n}{1}\right\}-\left\{\frac{n}{2}\right\}+\left\{\frac{n}{3}\right\}-\ldots-(-1)^{n}\left\{\frac{n}{n}\right\}\right|=\left|A-(-1)^{k} B\right| \leqslant
$$

$$
\leqslant \frac{k-2}{2}+\frac{n}{k} \leqslant \frac{\sqrt{2 n}-1}{2}+\sqrt{\frac{n}{2}}<\sqrt{2 n}.
$$
В.Барзов

М1336. Доказательство неравенства.

Задача из журнала «Квант» (1992 год, 10 выпуск)

Условие

Докажите для любых чисел $m$ и $n$, больших 1, неравенство
$$\frac{1}{\sqrt[n]{m+1}}+\frac{1}{\sqrt[m]{n+1}}>1 \tag{*}$$

Доказательство

Докажем, что неравенство
$$(1+x)^{a}<1+\alpha x$$
выполняется при $0 < \alpha < 1 $ и $x>0$. Пусть
$$f(x)=(1+x)^{\alpha}-\alpha x-1$$
Имеем
$$f(0) = 0$$
$$f^{\prime}(x)=\alpha(1+x)^{\alpha-1}-\alpha<0$$
при $x>0$. Следовательно, при $x \geqslant 0$ функция $f(x)$ убывает, поэтому $f(x)<f(0)=0$ при $x>0$.

Пользуясь неравенством $(*)$, получаем, что

$$(1+m)^{\frac{1}{n}}<1+\frac{m}{n},(1+n)^{\frac{1}{m}}<1+\frac{n}{m}$$
откуда сразу следует, что
$$\frac{1}{\sqrt[n]{1+m}}+\frac{1}{\sqrt[m]{1+n}}>\frac{n}{m+n}+\frac{m}{m+n}=1$$

И. Сендеров

Ф1308. Скольжение кубика в тележке

Задача из журнала «Квант» (1991 год, 9 выпуск)

Условие

У левого края тележки длиной $L=0,2$ м и массой $M = 1$ кг лежит кубик массой $m=0,3$ кг (см. рисунок). Кубику толчком придают горизонтальную скорость $v_{0} = 1$ м/с вправо. Считая, что тележка в начальный момент неподвижна, определите, на каком расстоянии от левого края тележки будет находиться кубик после того, как проскальзывание его относительно тележки прекратится. Коэффициент трения кубика о дно тележки $\mu = 0,1$. Удары кубика о стенки считать абсолютно упругими. Тележка едет по столу без трения.

Решение

Проще всего решать эту задачу, исходя из энергетических соображений. Согласно закону сохранения энергии, убыль кинетической энергии системы равна выделившемуся количеству теплоты, которое, в свою очередь, равно работе силы трения скольжения на
тормозном пути $l$:

$$
\Delta E_{k}=\frac{\left(M+m\right) u^{2}}{2}-\frac{m v_{0}^{2}}{2}=Q=F_{тр} l=-\mu m g l
$$

Скорость системы и после прекращения проскальзывания легко найти из закона сохранения импульса

$$
m v_{0}=\left(M+m\right) u
$$

После простых преобразований получим

$$
l=\frac{v_{0}^{2}}{2 \mu g\left(1+\frac{m}{M}\right)} \approx 0,38 m
$$

Значит, кубик остановится на расстоянии

$$
x=L-\left(l-L\right)=0,02 m
$$
от левого края тележки.

А. Зильберман

 

M1383. О сумме чисел с разными степенями

Задача из журнала «Квант» (1993 год, 11/12 выпуск)

Условие

Пусть сумма $n$ чисел равна $0$, причем $m$ — наименьшее из них, а $M$ — наибольшее. Докажите, что

  1. сумма квадратов этих чисел не превосходит $-mMn$;
  2. сумма четвертых степеней этих чисел не превосходит $-mMn(m^2 + M^2 +mM)$.

Решение

Пусть $x_{1}, x_{2}, \ldots, x_{n}$ — числа задачи: $$ m \leqslant x_{i} \leqslant M, x_{1}+x_{2}+ \ldots +x_{n} = 0$$

Обозначим сумму их квадратов через $D$, а сумму четвертых степеней — через $F.$

  1. Первое решение. Для каждого числа $x_{i}$ задачи имеем $$(x_{i} — m)(x_{i} — M)\leqslant 0,$$ или $$x_{i}^{2} \leqslant(m+M) x_{i}-m M. \tag{*}$$

    Сложив $n$ этих неравенств, получаем $$D \leqslant -nmM.$$

    Второе решение. При $m = M$ утверждение очевидно. Пусть $m<M$. Расположим в точках $(x_{i},x_{i}^{2})$, где $x_{i}$ — числа задачи, единичные массы. Проведем через точки $(m, m^2)$ и $(M, M^2)$ прямую. Ее уравнение —

    $$\frac{x-m}{M-m}=\frac{y-m^{2}}{M^{2}-m^{2}}.$$

    Поскольку все массы расположены под прямой, этим же свойством обладает и центр масс $(0, D/n).$ Поэтому $$-m(m+M)+m^{2} \geqslant \frac{D}{n},$$ что и требовалось доказать.

  2. Первое решение. Как и во втором решении пункта а) будем считать $m<M$. Попытаемся найти многочлен $x^4 + ax + b$, имеющий корнями числа $m$ и $M$. Заметим сразу, что многочлен такого вида имеет не более двух корней. Действительно, между любыми последовательными корнями многочлена найдется корень его произведения. Следовательно, если многочлен имеет хотя бы три корня, то его производная $4 x^{3} + a$ имеет не менее двух корней. Но уравнение $4 x^{3} = -a$ имеет единственный корень. Тогда из системы $$\left\{\begin{array}{l}m^{4}+a m+b=0 \\M^{4}+a M+b=0 \end{array}\right.$$ получаем $$a=-\left(m^{2}+M^{2}\right)(m+M),$$ $$b=m M\left(m^{2}+M^{2}+m M\right).$$

    С другой стороны, при этих значениях $a$ и $b$ равенства системы выполняются. Окончание решения аналогично первому решению пункта а).

    Второе решение. Рассуждая так же, как при втором решении пункта а), получаем уравнение прямой $$\frac{x-m}{M-m}=\frac{y-m^{4}}{M^{4}-m^{4}},$$ после чего без труда приходим к неравенству $$-m\left(M^{2}+m^{2}\right)(M+m)+m^{4} \geqslant \frac{F}{n},$$ что и требовалось доказать.

    Третье решение. Для каждого числа $x_{i}$ задачи из (*) следует $$\begin{aligned}
    x_{i}^{4} & \leqslant\left((m+M) x_{i}-m M\right)^{2}=\\
    &=(m+M)^{2} x_{i}^{2}-2(m+M) m M x_{i}+m^{2} M^{2}.
    \end{aligned}$$

    Сложив $n$ этих неравенств и воспользовавшись утверждением пункта а), получаем $$F \leqslant-n m M(m+M)^{2}+n m^{2} M^{2},$$ что и требовалось доказать.

  3. Замечание. Неравенство (*), а следовательно, и неравенства задачи превратятся в равенства, если $k$ из чисел $x_{i}$ равны $m$, а $n-k$ остальных равны $M$ (при этом $k m+(n-k) M=0$).

    Н.Васильев, В.Сендеров, Л.Туцеску

M2260. Наибольшее значение суммы

Задача из журнала «Квант» (2012 год, 4 выпуск)

Условие

Сто неотрицательных чисел $x_{1},x_{2},…,x_{100}$ расставлены по кругу так, что сумма любых трех подряд идущих чисел не превосходит $1$ (т. е. $x_{1}+x_{2}+x_{3}\leqslant 1,x_{2}+x_{3}+x_{4}\leqslant 1,…,x_{100}+x_{1}+x_{2}\leqslant 1$). Найдите наибольшее значение суммы $$S=x_{1}x_{3}+x_{2}x_{4}+x_{3}x_{5}+x_{4}x_{6}+…+x_{99}x_{1}+x_{100}x_{2}.$$

Ответ:$\frac{25}{2}.$

Решение

Положим $x_{2i}=0$, $x_{2i-1}=\frac{1}{2}$ для всех $i=1,…,50.$ Тогда $S=50\cdot\left(\frac{1}{2}\right )^{2}=\frac{25}{2}$. Итак, остается доказать, что $S\leqslant\frac{25}{2}$ для всех значений $x_{i},$ удовлетворяющих условию.

При любом $i$ от $1$ до $50$ имеем $x_{2i-1}\leqslant 1-x_{2i}-x_{2i+1}$,$x_{2i+2}\leqslant 1-x_{2i}-x_{2i+1}.$ По неравенству о средних,
\begin{multline*}
x_{2i-1}x_{2i+1}+x_{2i}x_{2i+2}\leqslant \\ \leqslant\left(1-x_{2i}-x_{2i+1}\right)x_{2i+1}+x_{2i}\left(1-x_{2i}-x_{2i+1}\right )=\\ =\left ( x_{2i}+x_{2i+1} \right )\left(1-x_{2i}-x_{2i+1}\right)\leqslant \\ \leqslant\left ( \frac{\left ( x_{2i}+x_{2i+1} \right )+\left( 1-x_{2i}-x_{2i+1} \right)}{2}\right )^{2}=\frac{1}{4}.\end{multline*}
Складывая получившиеся неравенства для $i=1,2,…,50$, приходим к нужному неравенству $$\sum\limits_{i=1}^{50}\left(x_{2i-1}x_{2i+1}+x_{2i}x_{2i+2}\right)\leqslant 50\cdot\frac{1}{4}=\frac{25}{2}.$$

Замечание. Предложенное решение показывает, что верен следующий несколько более общий факт. Пусть $2n$ неотрицательных чисел $x_{1},…,x_{2n}$ записаны в ряд, и пусть $x_{i}+x_{i+1}+x_{i+2}\leqslant 1$ для всех $i=1,2,…,2n-2.$ Тогда $$\sum\limits_{i=1}^{2n-2}x_{i}x_{i+2}\leqslant\frac{n-1}{4}.$$Исходное неравенство получается как частный случай для ряда из чисел $x_{1}, x_{2},…,x_{100},x_{1},x_{2}.$

И. Богданов