4.1 Непрерывные функции. Определение и примеры

Определение. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 \in (a, b)$. Говорят, что функция $f$ непрерывна в точке $x_0$, если $$\lim\limits_{x \to x_0}f(x) = f(x_0).$$

Замечание. В отличие от определения предела функции $f$ в точке $x_0$, здесь мы требуем, чтобы функция $f$ была определена не только в проколотой окрестности точки $x_0$, а в целой окрестности точки $x_0$. Кроме того, $\lim\limits_{x \to x_0}f(x)$ не просто существует, а равен определенному значению, а именно, $f(x_0)$.

Используя определение предела функции в смысле Коши, определение непрерывности функции $f$ в точке $x_0$ в кванторах можно записать следующим образом: $$\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0: \forall x \in (a, b): |x — x_0| < \delta \Rightarrow \Big|f(x) — f(x_0)\Big| < \varepsilon.$$

В этом определении можно не требовать выполнения условия $|x — x_0| > 0$, т. к. при $|x − x_0| = 0$ неравенство $\Big|f(x) − f(x_0)\Big| < \varepsilon$, очевидно, выполнено.

Так как величина $\lim\limits_{x \to x_0}f(x)$ зависит лишь от тех значений, которые функция $f$ принимает в сколь угодно малой окрестности точки $x_0$, то непрерывность – это локальное свойство функции.

В терминах окрестностей определение непрерывности выглядит следующим образом.

Определение. Функция $f$ называется непрерывной в точке $x_0$, если для любой окрестности $V$ точки $f(x_0)$ найдется такая окрестность $U$ точки $x_0$, что для всех $x \in U$ значение $f(x) \in V$, т. е. $f\Big(U \cap (a, b)\Big) \subset V$.

Применяя определение предела функции в смысле Гейне, определение непрерывности можно сформулировать так.

Определение. Функция $f$, определенная на интервале $(a, b)$, называется непрерывной в точке $x_0 \in (a, b)$, если любая последовательность аргументов $\{x_n\}$ $\Big(x_n \in (a, b), x_n \to x_0\Big)$ порождает последовательность значений функции $\{f(x_n)\}$, стремящуюся к $f(x_0)$.

Применяя понятие, одностороннего предела (т. е. предела слева и справа) в точке $x_0$, можно дать определения непрерывности слева (справа) в точке $x_0$. Именно, функция $f$ называется непрерывной слева (справа) в точке $x_0$, если $\lim\limits_{x \to x_0-0}f(x) = f(x_0)$ $\Big(\lim\limits_{x \to x_0+0}f(x) = f(x_0)\Big).$ При этом в определении непрерывности слева достаточно считать, что функция $f$ определена лишь в левой полуокрестности точки $x_0$, т. е. на $(a, x_0]$, а для
непрерывности справа – на $[x_0, b)$.

Легко видеть, что справедливо следующее

Утверждение. Для того чтобы функция $f$ была непрерывной в точке $x_0$, необходимо и достаточно, чтобы $f$ была непрерывной слева и справа в точке $x_0.$

Определение. Функция $f$, определенная на интервале $(a, b)$, называется разрывной в точке $x_0 \in (a, b)$, если $f$ не является непрерывной в этой точке.

Итак, функция $f$ является разрывной в точке $x_0$, если выполнено одно из двух следующих условий.

  1. Либо не существует $\lim\limits_{x \to x_0}f(x)$.
  2. Либо предел $\lim\limits_{x \to x_0}f(x)$ существует, но он не равен $f(x_0)$.

Пример 1. $f(x) ≡ C = Const$. Эта функция непрерывна в каждой точке $x_0 \in \mathbb{R}$, т. к. для любого $x \in \mathbb{R}$ $\Big|f(x) − f(x_0)\Big| = 0$.

Пример 2. $f(x) = x^2$, $-\infty \lt x \lt +\infty$, $x_0 \in \mathbb{R}$. Зададим $\varepsilon > 0$. Тогда из неравенства $$|x^2 — {x_0}^2| \leqslant \Big(|x| + |x_0|\Big)|x − x_0|$$ следует, что при $|x − x_0| < \delta = \min\Big(1, \frac{\varepsilon}{2|x_0| + 1}\Big)$ справедливо неравенство $|x^2 — {x_0}^2| < \varepsilon$, т. е. $\lim\limits_{x \to x_0}x^2 = {x_0}^2$, а значит, функция $f(x) = x^2$ непрерывна в любой точке $x_0 \in \mathbb{R}$.

Пример 3. $f(x) = \sqrt{x}$, $0 \leqslant x \leqslant +\infty$ Если $x_0 \in (0, +\infty)$, то $$\Big|\sqrt{x} — \sqrt{x_0}\Big| = \frac{|x — x_0|}{\sqrt{x} + \sqrt{x-0}} \leqslant \frac{1}{\sqrt{x_0}}|x — x_0| \lt \varepsilon$$ если только $|x − x_0| \lt \delta \equiv \sqrt{x_0} \cdot \varepsilon$. Таким образом, функция $f(x) = \sqrt{x}$ непрерывна в каждой точке $x_0 \gt 0$. В точке $x_0 = 0$ можно ставить вопрос о непрерывности справа. Имеем $\Big|\sqrt{x} — \sqrt{0}\Big| = \sqrt{x} \lt \varepsilon$, если только $0 \leqslant x \lt \delta \equiv \varepsilon^2$. Итак, $\lim\limits_{x \to 0+}\sqrt{x} = 0 = \sqrt{0}$, т. е. функция $f(x) = \sqrt{x}$ непрерывна справа в точке $0$.

Пример 4. $f(x) = \sin x$, $-\infty \lt x \lt +\infty$. Пусть $x_0 \in \mathbb{R}$. Тогда $$|\sin x − \sin x_0| = \bigg|2\cos{\frac{x + x_0}{2}}\sin{\frac{x — x_0}{2}}\bigg| \leqslant 2\bigg|\sin{\frac{x — x_0}{2}}\bigg| \leqslant |x — x_0|,$$ где последнее неравенство в этой цепочке следует из доказанного выше неравенства $|\sin t| \leqslant |t|$ ($0 \lt |t| \lt \frac{\pi}{2}$). Можем считать, что $|x − x_0| \lt \pi$. Тогда при $|x − x_0| \lt \delta \equiv \min(\pi, \varepsilon)$ справедливо $|\sin{x} − \sin{x_0}| \lt \varepsilon$, т. е. функция $f(x) = \sin{x}$ непрерывна в каждой точке $x_0 \in \mathbb{R}$. Аналогично доказываем, что функция $f(x) = \cos{x}$ непрерывна в каждой точке $x_0 \in \mathbb{R}$.

Пример 5. $f(x) = x \cdot \sin{\frac{1}{x}}$ при $x \neq 0$ и $f(0) = 0$. Покажем, что функция $f$ непрерывна в точке $x_0 = 0$. Имеем $f(0) = 0$ и $$\lim\limits_{x \to 0}f(x) = \lim\limits_{x \to 0}x\sin{\frac{1}{x}} = 0$$ (т. к. $\Big|f(x) − 0\Big| = \Big|x\sin{\frac{1}{x}}\Big| \leqslant |x| \lt \varepsilon$, если только $|x − 0| = |x| \lt \delta \equiv \varepsilon$). Итак, $\lim\limits_{x \to x_0}f(x) = f(0)$, так что $f$ непрерывна в точке $0$.

Пример 6. $f(x) = \text{sign}\;x$, $x \in \mathbb{R}$. Если $x_0 \neq 0$, то функция $f$ постоянна в некоторой окрестности точки $x_0$ и, следовательно, непрерывна в этой точке. Если же $x_0 = 0$, то не существует предела функции $f$ при $x \to 0$. Значит, функция $f$ разрывна в точке $0$. Более того,$\lim\limits_{x \to 0+}\text{sign}\; x = 1$, $\lim\limits_{x \to x_0}f(x)\text{sign}\;x = −1$, $\text{sign}\;0 = 0$, так что функция $\text{sign}\; x$ разрывна в точке $0$ как слева, так и справа.

Пример 7. Рассмотрим функцию Дирихле $$\mathcal{D}(x) =
\begin{cases}
1, & \text{если $x \in \mathbb{Q}$;} \\
0, & \text{если $x \in {\mathbb{R} \backslash \mathbb{Q}}$.}
\end{cases}$$ Пусть $x_0 \in \mathbb{R}$. Покажем, что не существует предела функции $\mathcal{D}$ при $x \to x_0$. Для этого выберем последовательность $\{x^\prime\}$ отличных от $x_0$ рациональных чисел, стремящуюся к $x_0$. Тогда $\mathcal{D}(x^\prime_n) = 1$ и, значит, $\lim\limits_{n \to +\infty}\mathcal{D}(x^\prime_n) = 1$. Если же взять последовательность ${x^{\prime\prime}_n}$ отличных от $x_0$ иррациональных чисел, стремящуюся к $x_0$, то получим, что $\mathcal{D}(x^{\prime\prime}_n) = 0$ и $\lim\limits_{n \to +\infty}\mathcal{D}(x^{\prime\prime}_n) = 0$. В силу определения предела функции по Гейне получаем, что функция $\mathcal{D}$ не имеет предела в точке $x_0$. Так как $x_0 \in \mathbb{R}$ – произвольная точка, то это означает, что функция Дирихле разрывна в каждой точке.

Пример 8. $f(x) = x \cdot \mathcal{D}(x)$, $x \in \mathbb{R}$. Функция $f$ разрывна в каждой точке $x_0 \neq 0$. В самом деле, если $\{x^\prime_n\}$ и $\{x^{\prime\prime}_n\}$ соответственно последовательности рациональных и иррациональных отличных от $x_0$ чисел, стремящиеся к $x_0$, то $\lim\limits_{n \to \infty}f(x^{\prime}_n) = x_0$ и $\lim\limits_{n \to \infty}f(x^{\prime\prime}_n) = 0$, так что, в силу определения предела функции по Гейне, функция $f$ не имеет предела в точке $x_0$. Если же $x_0 = 0$, то $\lim\limits_{n \to 0}f(x) = 0 = f(0)$. Действительно, $|f(x)| = |x \cdot \mathcal{D}(x)| \leqslant |x| \lt \varepsilon$, если только $|x − 0| = |x| \lt \delta \equiv \varepsilon$. Это означает, что данная функция непрерывна в единственной точке $x_0 = 0$.

Пример 9. Дана функция $$f(x) =
\begin{cases}
\frac{\sin x}{x}, & \text{если $x \neq 0$;} \\
1, & \text{если $x = 0$.}
\end{cases}$$ Проверить на непрерывность в точке $x_0 = 0$.

Решение

$$\lim\limits_{x \to x_0 — 0}\frac{\sin x}{x} = \lim\limits_{x \to 0 + 0}\frac{\sin x}{x} = 1 = f(x_0)$$ Отсюда следует, что $f(x)$ непрерывна в точке $x_0$, т. к. для того чтобы функция $f$ была непрерывной в точке $x_0$, необходимо и достаточно, чтобы $f$ была непрерывной слева и справа в точке $x_0.$

Пример 10. Покажите, что функция $f(x) = \frac{x + 3}{x — 2}$ разрывна в точке $x_0 = 2.$

Решение

Для этого достаточно показать, что предел данной функции при $x \to x_0$ либо не равен значению функции в точке $x_0$, либо не существует. $$\lim\limits_{x \to 2 — 0}\frac{x + 3}{x — 2} = -\infty$$ $$\lim\limits_{x \to 2 + 0}\frac{x + 3}{x — 2} = +\infty$$ Т. к. левосторонний и правосторонний пределы $f(x)$ не совпадают, то предела функция в точке $x_0$ не имеет, следовательно она разрывна в этой точке.

Литература

Непрерывные функции. Определение и примеры

Тест по теме: «Непрерывные функции. Определение и примеры.»


Таблица лучших: Непрерывные функции. Определение и примеры

максимум из 5 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

M683. О расположении разноцветных кружков

Задачa из журнала «Квант» (1981 год, 5 выпуск)

Условие

Несколько кружков одинакового размера положили на стол так, что никакие два не перекрываются. Докажите, что кружки можно раскрасить в четыре цвета так, что любые два касающиеся кружка будут окрашены в разные цвета. Найдите расположение кружков, при котором трех цветов для такой раскраски недостаточно.

Доказательство

Доказательство возможности требуемой раскраски проведем индукцией по числу кружков n. При n\leq 4 утверждение очевидно. Предположим, что оно справедливо для любого расположения k кружков. Пусть на столе лежит k+1 кружков. Зафиксируем на плоскости произвольную точку M и рассмотрим кружок, центр O которого находится на наибольшем расстоянии от M (если таких кружков несколько, возьмем любой из них). Нетрудно убедиться, что выбранного кружка касается не более двух других (центры всех кружков лежат в круге \left ( M, \left | OM \right | \right ) — рис. 1). Отбросим кружок с центром O и раскрасим нужным образом в четыре цвета оставшиеся k кружков (по предположению индукции это можно сделать). Вернем теперь кружок с центром O на место. Поскольку он касается не более трех из уже покрашенных кружков, его можно раскрасить в тот цвет, который не был использован при раскраске касающихся его соседей.

Утверждение доказано.

Рисунок 1.

На рисунке 2 изображены 11 кружков, для нужной раскраски которых трех цветов недостаточно. Действительно, предположив, что эти кружки можно раскрасить тремя цветами, получим, что кружки A, B, C, D, E должны быть окрашены одинаково. Но это невозможно, поскольку кружки A и E касаются.

Рисунок 2.

M610. Об «интересных» наборах чисел

Задачa из журнала «Квант» (1980 год, 2 выпуск)

Условие

Фиксируем $k \in \mathbb N$.
$а)$ Рассмотрим множество всех наборов целых чисел $a_1, \ldots , a_k$ таких, что $0 \le a_1 \le a_2 \le \ldots \le a_k \le k$; обозначим число таких наборов через $N.$ Рассмотрим среди них те, для которых $a_k = k$; пусть их число равно $M$. Докажите, что $N=2M$.
$б)$ Наложим на рассматриваемые наборы дополнительное ограничение: сумма $a_1 + \ldots + a_k$ делится на $k$. Пусть соответствующие числа равны $N’$ и $M’$. Докажите, что $N’ = 2M’$ (Из рисунка 1 видно, что при $k=3$ эти числа равны $M=10$, $N=20$; $M’=4$, $N’=8$.)

Рис. 1.

Решение

Как известно, если два множества имеют одинаковое число элементов, между ними можно установить взаимно однозначное соответствие. Собственно говоря, это и есть определение того, что в множествах элементов поровну, но этот факт иногда забывается. А между тем довольно часто равенство двух чисел устанавливается именно через взаимно однозначное соответствие подходящих множеств.

Нам нужно доказать, что наборов, в которых $a_k = k$ ровно половина. Поэтому попробуем установить взаимно однозначное соответствие между этими наборами и оставшимися, теми, у которых $a_k < k$.

Сопоставить набору $(a_1, a_2, \ldots, a_k)$ набор $(a_k, a_{k-1}, \ldots, a_1)$ нельзя, так как новый набор — невозрастающий. Можно попробовать сопоставить набору $(a_1, \ldots, a_k)$ набор $k-a_k, k-a_{k-1}, \ldots, k-a_1)$: он уже — неубывающий, но… $k-a_1$ не обязательно быть меньше $k$. Поэтому это соответствие не решает задачу.

Значит, необходимо более сложное соответствие. Для его построения нам понадобится понятие диаграммы Юнга данного набора.

Рис. 2

Что это такое, проще всего объяснить на примере: набору $(0, 0, 2, 3, 5)$ соответствует диаграмма, изображенная на рисунке 2 — в каждой строке столько соответствующее число.

Дополним диаграмму Юнга до квадрата (рис. 3). Тогда становится ясно, что наша первоначальная идея заключалась в том, что отсчитывать диаграмму не из красных, а из белых квадратиков (и, соответственно, не слева-снизу, а справа-сверху).

Рис. 3

Попытаемся теперь дополнить рисунок 3 вертикальной диаграммой — как на рисунке 4. Отсчитывая эту диаграмму снизу-слева, получим набор $(2, 2, 3, 4, 4)$. Назовем этот набор дополнительным к набору $(0, 0 , 2, 3, 5)$. Еще один пример изображен на рисунке 5.

Ясно, что если исходный набор $(a_1, \ldots, a_k),$ а дополнительный — $(b_1, \ldots, b_k)$, то $(a_k = k)$ тогда и только тогда, когда $b_k < k$. В самом деле, $a_k = k$, если верхняя правая клетка входит в основную диаграмму Юнга, и $a_k < k,$ если она входит в дополнительную.

Рис. 4

Установленное нами соответствие между наборами, у которых $a_k = k$, и наборами, у которых $a_k < k$, очевидно, взаимно однозначно. Тем самым мы решили $a)$. Кроме того, сумма чисел исходного и дополнительного наборов равна $k^2$ (в наших примерах — 25). Поэтому сумма чисел дополнительного набора делится на $k$ тогда и только тогда, когда делится на $k$ сумма чисел исходного набора. Это решает $б)$.

Рис. 5

Замечание. Задача $a)$ имеет и другое решение: можно непосредственно посчитать числа $N$ и $M$.

Лемма. Число наборов целых чисел $a_1, \ldots, a_m$ таких, что $0 \le a_1 \le \ldots \le a_m \le k$ равно $C^m_{k+m}$.

Доказательство. Рассмотрим набор $(b_1, \ldots, b_m)$ где $b_i = a_i + i : b_1 = a_1 +1, b_2 = a_2 +2 $ и т. д. Тогда, очевидно, $1 < b_1 < b_2 < \ldots < b_m \le k+m$, то есть $(b_1, \ldots, b_m)$ — произвольный возрастающий набор $m$ целых чисел их первых $k+m$ чисел. Число таких наборов равно $C^m_{k-m}$.

Поэтому число наборов, в которых $a_k \le k$, по лемме равно $C^k_{2k}$. Если же $a_k = k$, то нам остается выбрать числа $a_1, \ldots, a_{k-1}$ так, что $0 \le a_1 \le \ldots \le a_{k-1} \le k$; их число равно $C^{k-1}_{2k-1}$. Остается посчитать, что $2C^{k-1}_{2k-1}$ равно $C^k_{2k}$.

А. Толпыго

M1237. Точка внутри треугольника

Условие

1

Пусть точка O внутри, треугольника ABC= такова, что \overrightarrow{OK} +\overrightarrow{OM} +\overrightarrow{ON}= \overrightarrow{0}  М,N — основания перпендикуляров, опущенных из  О на стороны  AB, BC, CA треугольника. Докажите неравенство \frac{OK+OM+ON}{AB+BC+CA}\leq \frac{1}{2\sqrt{3}}

1

Решение

В силу условия на точку О отрезки ОК, ОМ, ON можно параллельно передвинуть так, чтобы составился треугольник. После поворота на 90° стороны этого треугольника станут параллельны сторонам треугольника ABC, следовательно, эти треугольники подобны. Коэффициент подобия обозначим через kk=\frac{OK}{AB} = \frac{OM}{BC} = \frac{ON}{CA}. Тогда левая часть доказываемого неравенства равна fe. С другой стороны, представляя площадь S треугольника ABC как сумму площадей треугольников AOB, BOC и COA, получим: 2S=a*OK+b*OM+c*ON = k(a^2+b^2+c^2) ,где a,b,c— длины сторон. Таким образом, задача сводится к доказательству неравенства:

s\leq \frac{a^2+b^2+c^2}{4\sqrt{3}}

Приведем одно из доказательств этого довольно известного неравенства, использующее формулу Герона и неравенство между средним арифметическим и средним геометрическим трех чисел (буквой p, как обычно, обозначен полупериметр):

S=\sqrt{p(p-a)(p-b)(p-c)}\leq \sqrt{p((p-a+p-b+p-c)/3)^3}=\frac{p^2}{3\sqrt{3}}\leq (a^2+b^2+c^2)/4\sqrt{3}

Последнее неравенство следует из соотношений:

4p^2=(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca и  2xy\leq x^2+y^2 .

Отметим, что точка О в этой задаче определена однозначно. Она называется точкой Лемуана треугольника ABC и является точкой пересечения его симедиан, т. е. прямых, симметричных медианам относительно соответствующих биссектрис.

 

Повторный предел

Повторные предельные значения. Для функции  u=f(x_{1},x_{2},...,x_{n}) нескольких переменных можно определить понятие предельного значения по одной из переменных  x=x_{k}   при фиксированных значениях остальных переменных. В связи с этим возникает понятие повторного предельного значения. Уясним это понятие на примере функции  u=f(x,y) двух переменных x и у. Пусть функция   u=f(x,y) задана в некоторой прямоугольной окрестности   \left | x-x_{0} \right |<d_{1}  ,   \left | y-y_{0} \right | <d_{2}  точки  M_{0}(x_{0},y_{0}) , за исключением, быть может, самой точки  M_{0}  . Пусть для каждого фиксированного y, удовлетворяющего условию  0<\left | y-y_{0} \right | <d_{2} существует предельное значение функции  u=f(x,y) одной переменной x в точке  x=x_{0}

\lim\limits_{x\rightarrow x_{0}} f(x,y)=\varphi (y)  

и пусть, кроме того, существует предельное значение b функции   \varphi (y) в точке  y=y_{0} :

\lim\limits_{y\rightarrow y_{0}}\varphi(y) =b

В этом случае говорят, что существует повторное предельное значение b для функции   u=f(x,y) в точке   M_{0} , которое обозначается следующим образом:

 \lim\limits_{y\rightarrow y_{0}} \lim\limits_{x\rightarrow x_{0}} f(x,y) =b

Теорема:

Пусть функция  u=f(x,y) определена в некоторой прямоугольной окрестности   \left | x-x_{0} \right |<d_{1}  ,   \left | y-y_{0} \right | <d_{2}  точки  M_{0}(x_{0},y_{0}) и имеет в этой точке предельное значение b. Пусть, кроме того, для любого фиксированного x,  0<\left | x-x_{0} \right | <d_{1}, существует предельное значение  \psi =\lim\limits_{y\rightarrow y_{0}}f(x,y) и для любого фиксированного y,  0<\left | y-y_{0} \right | <d_{2}, существует предельное значение  \phi (y)=\lim\limits_{x\rightarrow x_{0}} . Тогда повторные предельные значения  \lim\limits_{x\rightarrow x_{0}} \lim\limits_{y\rightarrow y_{0}} и  \lim\limits_{y\rightarrow y_{0}} \lim\limits_{x\rightarrow x_{0}} f(x,y) существуют и равны b.

 

Пример решения:

Вычислить повторный предел функций f(x,y)=\frac{x-y+x^2+y^2}{x+y}

Спойлер

 \lim\limits_{x\to 0}\lim\limits_{y\to 0}f(x,y)=\lim\limits_{x\to 0}( \lim\limits_{y\to 0}\frac{x-y+x^2+y^2}{x+y})=\lim\limits_{x\to 0}\frac{x+x^2}{x}=\lim\limits_{x\to 0}(1+x)=1

 \lim\limits_{y\to 0}\lim\limits_{x\to 0}f(x,y)=\lim\limits_{y\to 0}( \lim\limits_{x\to 0}\frac{x-y+x^2+y^2}{x+y})=\lim\limits_{y\to 0}\frac{-y+y^2}{y}=\lim\limits_{y\to 0}(-1+y)=-1

[свернуть]

Литература: