M1815. О перпендикулярах в неплоском четырехугольнике

Задача из журнала «Квант»(2002 год, 2 выпуск)

Условие

Общие перпендикуляры к противоположным сторонам неплоского четырехугольника $ABCD$ взаимно перпендикулярны.

Докажите, что они пересекаются.

Решение

Инструментом решения является теорема Менелая для пространственного четырехугольника, утверждающая, что точки $X,$ $U,$ $Y,$ $V,$ взятые на сторонах четырехугольника $AB,$ $BC,$ $CD,$ $DA$ или их продолжениях, лежат в одной плоскости тогда и только тогда, когда $\frac{AX}{XB} \cdot \frac{BU}{UC} \cdot \frac{CY}{YD} \cdot \frac{DV}{VA} = 1.$

Для доказательства теоремы Менелая продолжим прямые $XU$ и $YV$ до пересечения с $AC.$ Точки $X,$ $U,$ $Y,$ $V$ лежат в одной плоскости тогда и только тогда, когда все три прямые пересекаются в одной точке $P$ либо параллельны (рис. 1).

Рис. 1

Но в этом случае, применяя теорему Менелая к треугольникам $ABC$ и $ACD,$ получаем $\frac{AX}{XB} \cdot \frac{BU}{UC} \cdot \frac{CP}{PA} = 1$ и $\frac{CY}{YD} \cdot \frac{DV}{VA} \cdot \frac{AP}{PC} = 1.$ Перемножая эти равенства, получим требуемое соотношение.

Пусть теперь $XY$ – перпендикуляр к сторонам $AB$ и $CD,$ $UV$ – перпендикуляр к $AD$ и $BC.$ При ортогональной проекции на плоскость, параллельную $XY$ и $UV,$ прямой угол между прямыми $AB$ и $XY$ остается прямым. Поэтому четырехугольник $ABCD$ проецируется в прямоугольник $A’B’C’D’,$ а прямые $XY$ и $UV$ – в параллельные его сторонам прямые $X′Y′$ и $U′V′$ (рис. 2). Очевидно, что $\frac{A’X’}{X’B’} \cdot \frac{B’U’}{U’C’} \cdot \frac{C’Y’}{Y’D’} \cdot \frac{D’V’}{V’A’} = 1.$

Рис. 2

Следовательно, $\frac{AX}{XB} \cdot \frac{BU}{UC} \cdot \frac{CY}{YD} \cdot \frac{DV}{VA} = 1,$ и по теореме Менелая точки $X,$ $Y,$ $U,$ $V$ лежат в одной плоскости. Отсюда сразу следует утверждение задачи.

А.Заславский