М749* Задача на различные доказательства неравенства

Задача из журнала «Квант»(1982 год, 6 выпуск)

Условие

a) Докажите, что если $x_1, x_2, x_3$— положительные числа, то $$\frac{x_1}{x_2 + x_3} + \frac{x_2 }{x_3+x_1} + \frac{x_3}{x_1 + x_2} \ge \frac{3}{2};$$ при каком условии то неравенство превращается в равенство?

б) Докажите, что если $x_1, x_2,…,x_n (n ≥ 4)$ — положительные числа, то

$$\frac{x_1}{x_2 + x_n} + \frac{x_2}{x_3 + x_1} + … + \frac{x_{n-1}}{x_n + x_{n-2}} + \frac{x_n}{x_1 + x_{n-1}} \ge 2.$$ причем равенство возможно только при $n = 4.$

в) Докажите, что при $n>4$ неравенство пункта б) является точным в том смысле, что ни при каком $n$ число $2$ в правой части нельзя заменить на большее.

А. Прокопьев

Решение

a) Пусть $ a=x_2+x_3, b=x_3+x_1, c=x_1+x_2.$ Тогда $x_1=\frac{b+c-a}{2},$ $x_2 = \frac{a+c-b}{2},$ $x_3=\frac{a+b-c}{2}, $ и левая часть неравенства перепишется так: $ \frac{b+c-a}{2a}+\frac{a+c-b}{2b}+\frac{a+b-c}{2c}=$ $\frac{1}{2}(\frac{b}{a}+\frac{a}{b})+\frac{1}{2}(\frac{c}{a}+\frac{a}{c})+\frac{1}{2}(\frac{b}{c}+\frac{c}{b})-\frac{3}{2}.$ Каждая из скобок в этом выражении, не меньше $2$ в силу известного неравенства $x + \frac{1}{x} \ge 2$ при $x > 0.$ Поэтому вся левая часть не меньше $3-\frac{3}{2} = \frac{3}{2}.$ А так как $x + \frac{1}{x} = 2$ только при $x = 1,$ доказанное неравенство обращается в равенство только при $a = b = c.$

б) Докажем неравенство индукцией по $n.$ При $n = 4$ оно очевидно: $$\frac{x_1}{x_2+x_4}+\frac{x_2}{x_3+x_1} + \frac{x_3}{x_4+x_2}+\frac{x_4}{x_1+x_3} = \frac{x_1+x_3}{x_2+x_4}+\frac{x_2+x_4}{x_1+x_3} \ge 2$$ равенство возможно в том и в только в том случае, когда $x_1 + x_3 = x_2 + x_4.$

Докажем теперь неравенство для произвольных положительных чисел $ x_1, …, x_{n + 1},$ предполагая, что оно справедливо для любых $ n (n \ge 4)$ положительных чисел. Выберем наименьшее из чисел $ x_1, …, x_{n + 1}.$ Поскольку они входят в неравенство симметрично, можно, не ограничивая общности, считать, что это $ x_{n + 1}.$ Тогда $x_{n+1} > 0,$ $x_{n+1} \le x_n$ и $x_{n + 1} \le x_1,$ и поэтому $$\frac{x_1}{x_2 + x_{n+1}} + \frac{x_2}{x_3+x_1} + … + \frac{x_n}{x_{n + 1}+x_{n- 1}}+$$ $$ +\frac{x_{n+1}}{x_1+x_n}> \frac{x_1}{x_2+x_n}+\frac{x_2}{x_3 + x_1} + … + \frac{x_n}{x_1 + x_{n-1}} \ge 2 $$

(последнее неравенство выполняется по предположению индукции). Попутно получаем, что при $n>4$ равенство невозможно.

в) Числа $x_1, …, x_n$ удобно расставлять по окружности; тогда каждое слагаемое в левой части рассматриваемого неравенства есть одно из этих чисел, деленное на сумму двух соседних с ним. При $n = 2k$ определим $x_i$ так, как показано на рисунке 1, а при $n = 2k+1$ — как на рисунке 2.

 

В первом случае получим сумму $$2(\frac{1}{q+1}+ \frac{q}{q^2+1}+\frac{q^2}{q^3+q}+ … + \frac{q^{k-1}}{q^{k-1}+q^{k-2}})= 2(1 + \frac{(k-2)q}{g^2+1}),$$

а во втором —

$$ \frac{1}{2q} + 2(\frac{q}{q^2+1} + \frac{q^2}{q^3 + q} + … + \frac{q^k}{q^k+q^{k-1}})=\frac{1}{2q} + \frac{2(k-1)q}{q^2+1}-\frac{2q}{q+1}=$$ $$=2+(\frac{1}{2q} + \frac{2(k-1)q}{q^2+1} — \frac{2}{q+1}).$$

В обоих случаях при достаточно большом $q$ значение левой части будет сколь угодно близко к $2$, поэтому число $2$ в неравенстве на большее заменить нельзя.

А. Егоров

 

M677. О высоте, медиане и биссектрисе, радиусе вписанной окружности в правильном треугольнике

Задача из журнала «Квант» (выпуск №4, 2001)

Условие

Внутри остроугольного треугольника $ABC$ выбрана точка $M$, являющаяся:

  1.   точкой пересечения медиан;
  2. точкой пересечения биссектрис;
  3. точкой пересечения высот.

Докажите, что если радиусы окружностей, вписанных в треугольники $AMB$, $BMC$, $AMC$ равны, то треугольник $ABC$ — правильный.

Решение

Рис.1

  1.  Площади треугольников $AMB$, $BMC$ и  $AMC$ (Рис.$1$) одинаковы – они равны $\frac{1}{3}S_{ABC}$(докажите это).
    Поскольку площадь $S$ треугольника, его полупериметр $p$ и радиус $r$ вписанной в него окружности связаны соотношением $S = pr$, периметры треугольников $AMB$, $BMC$ и $AMC$ также одинаковы.Предположим теперь, что треугольник $ABC$ – неправильный; пусть, например, $|AB| > |BC|$. Тогда угол $BDA$ – тупой, поэтому $|AM| > |MC|$, так что периметр треугольника $AMB$ больше периметра треугольника $BMC$ – противоречие.

    Рис.2
  2.  Поскольку $\widehat{CBM} = \widehat{CBM}$ и радиусы окружностей, вписанных в треугольники $AMB$ и $BMC$, равны, эти окружности касаются биссектрисы $BM$ в одной и той же точке (Рис.$2$).
    Из этого следует, что все три окружности попарно касаются, и их центры $O_1$, $O_2$ и $O_3$ образуют правильный треугольник, стороны которого перпендикулярны биссектрисам данного треугольника $ABC$. Поэтому, например, $\widehat{BMC} = \frac{\pi + A }{ 2} = \frac{2\pi}{3}$, то есть $\widehat{A}  = \frac{\pi}{3}$. Аналогично доказывается, что $B = C = \frac{\pi}{3}$.

    Рис.3
  3. Как и в задаче $1$, предположим, что треугольник  $ABC$ – неправильный; пусть, например,  $|BC| > |AC|$. Обозначим через $D$ и $E$ точки касания окружностей, вписанных в треугольники $AMB$ и $BMC$ соответственно, со сторонами $AC$ и $BC$ (Рис.$3$).  Поскольку радиусы этих окружностей равны и $\widehat{CAM} = \widehat{CBM}$, $|AD| = |BE|$. Значит,  $|CD| < |CE|$.

С другой стороны, при  нашем предположении $\widehat{B } < \widehat{A}$, так что $\widehat{MCA} = \frac{\pi}{2} – \widehat{A} < \frac{\pi}{2} – \widehat{B} = \widehat{BCM}$. Поэтому $|CD| > |CE|$ – противоречие.

А.Егоров

М679. Точки касания

Задача из журнала «Квант» (1981 год, 4 выпуск)

Условие

а) На плоскости расположены четыре круга так, что первый касается второго в точке $A$, второй — третьего в точке $B$, третий — четвертого в точке $C$ и четвертый — первого в точке $D$ (рис. 2). Докажите, что через четыре названные точки можно провести окружность или прямую.

б) *В пространстве расположены четыре шара так, что первый касается второго в точке $A$, второй — третьего в точке $B$, третий — четвертого в точке $C$ и четвертый — первого в точке $D$. Докажите, что через четыре названные точки можно провести окружность или прямую.

в) *В пространстве расположены четыре шара так, что каждый касается трех других. Докажите, что шесть точек касания принадлежат одной сфере или одной плоскости.

Решение

а) Прежде всего, что если какие-то три из точек $A$, $B$, $C$, $D$ лежат на одной прямой, то и четвертая точка лежит на той же прямой (рис. 1).

рис. 1

Пусть все четыре круга касаются внешним образом (рис. 2) и пусть $AA_{1}$, $BB_{1}$, $CC_{1}$, $DD_{1}$ — отрезки общих касательных.

рис. 2

Из $\widehat{A_{1}A}D = \widehat{D_{1}D}A$, $\widehat{D_{1}D}C = \widehat{C_{1}C}D$, $\widehat{B_{1}B}C = \widehat{C_{1}C}B$ и $\widehat{A_{1}A}B = \widehat{B_{1}B}A$ следует $\widehat{A} + \widehat{C} = \widehat{B} + \widehat{D}$; значит, около четырехугольника $ABCD$ можно описать окружность.

В случае, когда не все четыре круга касаются внешним образом (рис. 3), рассуждения аналогичны.

рис. 3.

б) Если центры шаров лежат в одной плоскости, то и все точки касания лежат в этой плоскости, так что в этом случае задача б) сводится к задаче а).

Если же центры $O_{1}$, $O_{2}$, $O_{3}$, $O_{4}$ — не в одной плоскости, проведем плоскость через три точки касания, например $A$, $B$, $C$ (рис. 4), и докажем, что четвертая точка $D$ принадлежит этой плоскости.

рис. 4.

Пусть $h_{1}$, $h_{2}$, $h_{3}$, $h_{4}$ — расстояния от точек $O_{1}$, $O_{2}$, $O_{3}$, $O_{4}$ до плоскости $(ABC)$, а $R_{1}$, $R_{2}$, $R_{3}$, $R_{4}$ — радиусы шаров. Ясно, что $\frac{h_{1}}{h_{2}} = \frac{R_{1}}{R_{2}}$, $\frac{h_{2}}{h_{3}} = \frac{R_{2}}{R_{3}}$, $\frac{h_{3}}{h_{4}} = \frac{R_{3}}{R_{4}}$ (см. рис. 4). Перемножая эти отношения, получаем $\frac{h_{1}}{h_{4}} = \frac{R_{1}}{R_{4}} = \frac{\mid O_{1}D\mid}{\mid O_{4}D\mid}$, что и означает принадлежность точки $D$ плоскости $(ABC)$.

Таким образом, плоскость $(ABC)$ пересекает шары по четырем кругам, касающимся, соответственно, друг друга в точках $A$, $B$, $C$, $D$ так, как сказано в пункте а). Из этого следует утверждение задачи б).

в) Пусть $A$ — точка касания первого и второго, $B$ — первого и третьего, $C$ — первого и четвертого, $D$ — второго и третьего, $E$ — второго и четвертого, $F$ — третьего и четвертого шаров.

По доказанному в пункте б) точки $A$, $C$, $F$, $D$ лежат на одной окружности или прямой. Точки $A$, $E$, $F$, $B$ обладают тем же свойством.

У этих двух четверок точек есть две общие точки: $A$ и $F$. Поэтому если одна из четверок лежит на прямой, все шесть точек лежат в одной плоскости.

Если же эти четверки лежат на двух окружностях, находящихся в разных плоскостях и имеющих общую хорду $AF$, то через эти окружности можно провести сферу; центром этой сферы является точка пересечения перпендикуляров к плоскостям этих окружностей (эти перпендикуляры лежат в плоскости, проходящей через центры окружностей и середину их общей хорды $AF$).

В. Произволов

М698. Задача о центрах прямоугольников

Условие

На сторонах [latex]a, b, c, d[/latex] вписанного в окружность четырехугольника «наружу» построены прямоугольники размерами [latex]a\times c, b\times d,[/latex][latex]c\times a, d\times b[/latex]. Докажите, что центры этих прямоугольников являются вершинами а)параллелограмма, б)прямоугольника.

Решение


а) Пусть [latex]M, P, N, Q[/latex] — центры прямоугольников, построенных на сторонах [latex]AB, BC, CN, DA[/latex] вписанного четырехугольника [latex]ABCD[/latex] (см. рисунок).
Поскольку в четырехугольнике, вписанном в окружность, суммы противоположных углов равны [latex]180\textdegree[/latex] , а прямоугольники, построенные на противоположных сторонах, конгруэнтны, то [latex]\angle MBP = \angle NDQ[/latex] и [latex]\angle NCP = \angle MAQ[/latex] (мы рассматриваем углы, меньшие [latex]180\textdegree[/latex]). Таким образом, треугольник [latex]MBP[/latex] подобен [latex]NDC[/latex] и треугольник [latex]NCP[/latex] подобен [latex]MAQ[/latex]. Отсюда [latex]\mid MP \mid = \mid NQ \mid[/latex] и [latex]\mid NP \mid = \mid MQ \mid[/latex], а это означает, что четырехугольник [latex]MPNQ[/latex] — параллелограмм.
б) Можно считать, что сторона [latex]MQ[/latex] параллелограмма видна из точки [latex]A[/latex] изнутри параллелограмма, сторона [latex]PN[/latex] видна из точки [latex]C[/latex] снаружи и, аналогично, сторона [latex]MP[/latex] видна из точки [latex]B[/latex] изнутри, а сторона [latex]NQ[/latex] из точки [latex]D[/latex] видна снаружи. Тогда расположение всех отрезков и треугольников будет таким, как показано на рисунке. Докажем, что, [latex]\angle MPN + \angle NQM = 180\textdegree[/latex] (отсюда будет следовать, что [latex]\angle MPN = \angle NQM = 90\textdegree[/latex]). Эта сумма, очевидно, равна [latex]\angle BPC + \angle DQA = 180\textdegree[/latex], поскольку [latex]\angle BPM = \angle DQN[/latex], а [latex]\angle CPN = \angle AQM[/latex].

М1693. О пересекающихся окружностях

Задача о пересекающихся окружностях

Условие
Две окружности пересекаются в точках $Р$ и $Q$.Третья окружность с центром в точке $Р$ пересекает первую в точках $А$, $В$, а вторую – в точках $С$ и $D$ (см.рисунок). Докажите, что углы $\angle AQD$ и $\angle BQC$ равны.
http://ib.mazurok.com/wp-content/uploads/2018/06/1-2.svg
Решение
Треугольники $АРВ$ и $DPC$ равнобедренные. Обозначим углы при их основаниях $\angle АВР = \angle ВАР = \alpha$, $\angle DCP = \angle CDP = \beta$. Четырехугольники $AQBP$ и $DQCP$ вписанные, отсюда $\angle AQP = \angle ABP = \alpha$ и $\angle DQP = \angle DCP = \beta$ . Получаем: $∠AQD = \angle AQP + \angle DQP = \alpha + \beta$ . Далее, $ \angle BQP = \angle BAP = \alpha$, также $ \angle CQP = \beta и \angle BQC = \angle BQP + \angle CQP = \alpha + \beta$ . Значит, $\angle AQD = \angle BQC$.

А.Заславский