Применение формулы Тейлора к нахождению границ

Рассмотрим вычисление пределов с помощью формулы Тейлора на примерах:

$latex 1)\; \;

\lim\limits_{x\rightarrow 0}\frac{tg x-\frac{x}{1+x^{2}} }{\sin x-sh x}=\begin{bmatrix}
tg x=x+\frac{x^{3}}{3}+\circ (x^{2})\\
-\frac{1}{1+x^{2}}=1-x^{2}+\circ (x^{2})\\
-x\frac{1}{1+x^{2}}=x(1-x^{2}+\circ (x^{2}))=x-x^{3}+\circ (x^{3})\\
tg x-\frac{x}{1+x^{2}}=x+\frac{x^{3}}{3}+\circ (x^{2})-x+x^{3}-\circ (x^{3})=\frac{4}{3}x^{3}+\circ (x^{3})\\

\sin x=x-\frac{x^{3}}{3!}+\circ (x^{4})\\

sh x=x+\frac{x^{3}}{3!}+\circ (x^{4})\\

\sin x-sh x=x-\frac{x^{3}}{3!}-x-\frac{x^{3}}{3!}+\circ (x^{4})=-\frac{1}{3}x^{3}+\circ (x^{4})\\

\end{bmatrix}=\lim\limits_{x\rightarrow 0}\frac{\frac{4}{3}x^{3}+\circ (x^{3})}{-\frac{1}{3}x^{3}+\circ (x^{4})}=-4 &s=4

$

$latex 2)\; \;

\lim\limits_{x\rightarrow +\infty }x(\sqrt{x^{2}+2x}-2\sqrt{x^{2}+x}+x)=\lim\limits_{x\rightarrow +\infty }x(\sqrt{x^{2}(1+\frac{2}{x})}-2\sqrt{x^{2}(1+\frac{1}{x})}+x)=\begin{bmatrix}
t=\frac{1}{x}\\
t\rightarrow 0\\
\end{bmatrix}=\lim\limits_{t\rightarrow 0}\frac{1}{t^{2}}(\sqrt{1+2t}-2\sqrt{1+t}+1)=\begin{bmatrix}
(1+x)^{\alpha }=1+\frac{\alpha }{1!}x+\frac{\alpha(\alpha-1) }{2!}x^{2}+\circ (x^{2})\\
(1+2t)^{\frac{1}{2}}=1+\frac{\frac{1}{2}}{1!}2t+\frac{\frac{1}{2}(-\frac{1}{2}) }{2!}4t^{2}+\circ (t^{2})\\
(1+t)^{\frac{1}{2}}=1+\frac{\frac{1}{2}}{1!}t+\frac{\frac{1}{2}(-\frac{1}{2}) }{2!}t^{2}+\circ (t^{2})\\

\end{bmatrix}=\lim\limits_{t\rightarrow 0}\frac{1}{t^{2}}(1+t-\frac{1}{2}t^{2}-2-t+\frac{1}{4}t^{2}+\circ (t^{2})+1)=\lim\limits_{t\rightarrow 0}\frac{1}{t^{2}}*(-\frac{1}{4})t^{2}+\circ \frac{(t^{2})}{t^{2}}=\begin{bmatrix}
\circ \frac{(t^{2})}{t^{2}}\rightarrow 0\\
\end{bmatrix}=-\frac{1}{4} &s=1

$

Источники:

  • Лысенко З.М. Конспект лекций по курсу математического анализа. (тема «Вычисление предела с помощью формулы Тейлора»).
  • Ильин В.А., Позняк Э.Г. Основы математического анализа.Выпуск 2, 1982 год. Часть 1. Глава 8, пар. 16, стр 278-281.

Формула Тейлора с остатком в форме Пеано

Формулировка:

Если существует $ f^{(n)}(x_{0}) $, то $ f(x) $ представима в следующем виде:

$$ f(x)=\sum\limits_{k=0}^{n}\frac{f^{(k)}}{k!}(x-x_{0})^{k}+o((x-x_{0})^{n})_{x\to x_{0}} $$

Это выражение $ f(x) $ называется формулой Тейлора с остаточным членом в форме Пеано (или локальной формулой Тейлора)

Доказательство:

Для начала докажем Лемму

Пусть функции $ \varphi(x),\psi(x) $ определены в  $ \delta $  окрестности точки $ x_{0} $ и удовлетворяют следующим условиям:

  1. $ \forall x \in U_{\delta} \exists \varphi^{(n+1)}(x),\psi^{(n+1)}(x); $
  2. $ \varphi(x_{0})=\varphi'(x_{0})=…=\varphi^{(n)}(x_{0})=0 $, $ \psi(x_{0})=\psi'(x_{0})=…=\psi^{(n)}(x_{0})=0 $
  3. $ \psi(x)\neq0,\psi^{k}(x)\neq 0 \forall x\in U_{\delta}(x_{0}),k=\overline{1,n+1} $

Тогда $ \forall x\in U_{\delta}(x_{0}) $ существует точка $ \xi $, принадлежащая интервалу с концами $ x_{0} $ и $ x $ такая, что $ \frac{\varphi(x)}{\psi(x)}=\frac{\varphi^{n+1}(\xi)}{\psi^{n+1}(\xi)} $

Доказательство 

Пусть, например, $ x \in (x_{0},x_{0}+\delta) $. Тогда применяя к функциям $ \varphi $ и $ \psi $ на отрезке $ [x_{0},x] $ теорему Коши и учитывая, что $ \varphi(x)=\psi(x)=0 $ по условию, получаем

$$ \frac{\varphi(x)}{\psi(x)}=\frac{\varphi(x)-\varphi(x_{0})}{\psi(x)-\psi(x_{0})}=\frac{\varphi'(\xi_{1})}{\psi'(\xi_{1})}$, $ x_{0}<\xi_{1}<x $$

Аналогично, применяя к функциям $ \varphi’ $ и $ \psi’ $ на отрезке $ [x_{0},\xi_{1}] $ теорему Коши, находим

$$ \frac{\varphi'(\xi_{1})}{\psi'(\xi_{1})}=\frac{\varphi'(\xi_{1})-\varphi'(x_{0})}{\psi'(\xi_{1})-\psi'(x_{0})}=\frac{\varphi»(\xi_{2})}{\psi»(\xi_{2})},$$ $$ x_{0}<\xi_{2}<\xi_{1} $$

Из этих двух равенств следует, что

$$ \frac{\varphi(x)}{\psi(x)}=\frac{\varphi'(\xi_{1})}{\psi'(\xi_{1})}=\frac{\varphi»(\xi_{2})}{\psi»(\xi_{2})},$$ $$ x_{0}<\xi_{2}<\xi_{1}<x<x_{0}+\delta $$

Применяя теорему Коши последовательно к функциям $ \varphi» $ и $ \psi» $,$ \varphi^{(3)} $ и $ \psi^{(3)} $,…,$ \varphi^{(n)} $ и $ \psi^{(n)}$ на соответствующих отрезках получаем

$$ \frac{\varphi(x)}{\psi(x)}=\frac{\varphi'(\xi_{1})}{\psi'(\xi_{1})}=…=\frac{\varphi^{n}(\xi_{n})}{\psi^{n}(\xi_{n})}=\frac{\varphi^{n+1}(\xi)}{\psi^{n+1}(\xi)} $$

где $ x_{0}<\xi<\xi_{n}<…<\xi_{2}<\xi_{1}<x<x_{0}+\delta $

Равенство доказано для случая, когда $ x \in(x_{0},x_0+\delta) $, аналогично рассматривается случай, когда $ x \in(x_0-\delta,x_{0}) $.

Теперь, когда лемма доказана, приступим к доказательству самой теоремы:

Из существования $ f^{(n)}(x_{0}) $ следует, что функция $ f(x_{0}) $ определена и имеет производные до $ (n-1) $ порядка включительно в $ \delta $ окрестности точки  $ x_{0} $

Обозначим $ \varphi(x)=r_{n}(x),\psi(x)=(x-x_{0})^{n} $, где  $ r_{n}(x)=f(x)-P_{n}(x) $.

Функции $ \varphi(x) $ и $ \psi(x) $ удовлетворяют условиям леммы, если заменить номер $ n+1 $ на $ n-1 $

Используя ранее доказанную лемму и учитывая, что $ r_{n}^{(n-1)}(x_{0})=0 $ получаем

$$ \frac{r_{n}(x)}{(x-x_{0})^{n}}=\frac{r_{n}^{n-1}(\xi)-r_{n}^{(n-1)}(x_{0})}{n!(\xi-x_{0})}, $$ $$ \xi=\xi(x)(*) $$

где $ x_{0}<\xi<x<x_{0}<x_{0}+\delta $ или $ x_{0}-\delta<x<\xi<x_{0} $.

Пусть $ x\to x_{0} $, тогда из неравенств следует, что $ \xi \to x_{0} $, и в силу существования $ f^{(n)}(x_{0}) $ существует

$$ \lim\limits_{x\to x_{0}}\frac{r_{n}^{(n-1)}(x)-r_{n}^{(n-1)}(x_{0)}}{x-x_0}= $$

$$ =\lim\limits_{x\to x_{0}}\frac{r_{n}^{(n-1)}(\xi)-r_{n}^{(n-1)}(x_{0)}}{\xi-x_{0}}=r_{n}^{(n)}(x_{0})=0 $$

Так как выполняются равенства $ r_{n}(x_{0})=r_{n}'(x_{0})=…=r_{n}^{(n)}(x_{0})=0 $

Таким образом, правая часть формулы $ (*) $ имеет при $ x\to x_{0} $ предел, равный нулю, а поэтому существует предел левой части этой формулы, так же равный нулю. Это означает, что $ r_{n}(x)=o((x-x_{0})^{n}),x\to x_{0} $, то есть $ f(x)-P_{n}(x)=o((x-x_{0})^{n}) $, что и требовалось доказать.

Пример:

Разложить функцию $ y=\cos^{2}(x) $ в окрестности точки $ x_{0}=0 $  по Тейлору с остатком в форме Пеано.

Решение

Табличное разложение косинуса имеет следующий вид:

$$ \cos(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-…+(-1)^{n}\frac{x^{2n}}{(2n)!}+o(x^{2n+1}) $$

Представим функцию $ \cos^{2}(x) $ в виде:

$$ \cos^{2}(x)=\frac{1+\cos(2x)}{2}=\frac{1}{2}+\frac{1}{2}\cos(2x) $$

Заменим в табличном разложении $ x $ на $ 2x $ и подставим представление косинуса.Получим

$$ \cos^{2}(x)=1-x^2+\frac{x^{4}}{3}-…+(-1)^{n} \frac{2^{2n-1}x^{2n}}{2n!}+o(x^{2n+1})$$

Источники:

  1. Конспект по курсу математического анализа Лысенко З.М.
  2. Тер-Крикоровв А.М., Шабунин М.И. Курс математического анализа -М.:ФИЗМАТ-ЛИТ, 2001.-672 с. гл. IV §18 с. 161.

Тест на знание формулы Тейлора(ост.Пеано)

Проверьте себя на знание доказательства и применения формулы Тейлора с остатком в форме Пеано.

Теорема про остаток формулы Тейлора

Получим информацию об остатке.

Теорема (об остатке [latex]r_{n}(x)[/latex] ф-лы Тейлора)

[latex]f(t), {f}'(t), {f}»(t),\cdots , f^{(n)}(t)\in C[x_{0},x][/latex] и [latex]\exists f^{(n+1)}(t)[/latex], где [latex]t \in (x_{0},x)[/latex]. Пусть ф-ция [latex]\varphi \in C[x_{0},x][/latex] и [latex]\exists \varphi'(t) \neq 0[/latex]     [latex]\forall t(x_{0},x)[/latex]. Тогда [latex]\exists[/latex] т. [latex]\xi \in (x_{0},x)[/latex] : [latex]r_{n}(x_{0},x)=\frac{\varphi (x) -\varphi (x_{0})}{\varphi ‘(\xi)n!} * \frac{f^{(n+1)}(\xi)}{1!}*(x-\xi)^{n}[/latex]

[latex]\square [/latex]
Введем вспомогательную ф-цию [latex]F(t)=f(x)-P_{n}(t,x)[/latex], т.е. [latex]P_{n}(t,x)=f(t)+\frac{{f}'(t)}{1!}(x-t)+\cdots + \frac{f^{(n)}(t)}{n!}(x-t)^{n}[/latex]

[latex]F(t)=f(x)-\left [ f(t)+\frac{{f}'(t)}{1!}(x-t)+\frac{{f}»(t)}{2!}(x-t)^{2}+ \frac{f^{(3)}(t)}{3!}(x-t)^{3}+ \cdots+\frac{f^{(n)}(t)}{n!}(x-t)^{n} \right ][/latex] =[latex]-\left [ f'(t)+ \frac{f»(t)}{1!}(x-t)’ +\frac{f^{(3)}(t)}{2!}((x-t)^{2})’+ \frac{f^{(4)}(t)}{3!}((x-t)^{3})’ +\cdots+\frac{f^{(n+1)}(t)}{n!}((x-t)^{n})’ \right ][/latex]=[latex]-\left [ f'(t)+ \frac{f»(t)(x-t)+(x-t)’f'(t)}{1!} \right ][/latex]=[latex s=4]-\left [ f'(t)+ \frac{f»(t)}{1!}(x-t) +\frac{f'(t)}{1!}(-1)+ \frac{f^{(3)}(t)}{2!}(x-t)^{2}+\frac {f»(t)}{2!}2(x-t)(-1)+\frac {f^{(4)}(t)}{3!}(x-t)^{3}+3(x-t)^{2}(-1)\frac {f^{(3)}(t)}{3!}+\cdots+\frac{f^{(n+1)}(t)}{n!}(x-t)^{n}+ n(x-t)^{n-1}(-1)\frac {f^{n}(t)}{n!} \right ][/latex]

[latex]F'(t)=-\frac {f^{(n+1)}(t)}{n!}(x-t)^{n}[/latex]
К паре ф-ций F(t) и [latex]\varphi (t)[/latex] на [latex][x_{0},x][/latex] применим теорему Коши о конечных приращениях [latex]\Rightarrow \exists[/latex] т. [latex]\xi \in (x_{0},x)[/latex]: [latex]\frac {f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}[/latex];
[latex]\frac {\overbrace {F(x)}^0-\overbrace{F(x_{0})}^{r_{n}(x_{0},x)}}{\varphi (x) — \varphi (x_{0})}=\frac {F'(\xi)}{\varphi ‘(\xi)}[/latex];

Уточняем!
[latex]F(x)=f(x) — P_{n}(x,x)=0;[/latex]
[latex]F(x_{0})=f(x)-P_{n}(x_{0},x)=r_{n}(x_{0},x)[/latex];
[latex]F'(\xi)=- \frac {f^{(n+1)}(\xi)}{n!}(x-\xi )^{n}[/latex];

Таким образом мы получаем следующую формулу:
[latex]\frac{0-r_{n}(x_{0},x)}{\varphi(x)-\varphi(x_{0})}= -\frac{f^{(n+1)}(\xi)}{n!\varphi(\xi)}(x-\xi)^{n}[/latex]. Отсюда
[latex]r_{n}(x_{0},x)=\frac{\varphi(x)-\varphi(x_{0})}{\varphi'(\xi)n!}*f^{(n+1)}(\xi)*(x-\xi)^{n}[/latex].
[latex]\blacksquare[/latex]

 

 

Список литературы:

1. Конспект лекций по математическому анализу (Лысенко З.М.)

2. Г.М.Фихтенгольц, Курс дифференциального и интегрального исчисления, том 1, 1962 год, стр. 246-257.

О приближенном вычислении с помощью формулы Тейлора

Если остаток в формуле Тейлора $latex |r_{n}(x_{0},x)|< \alpha _{0} &s=1 $, то формулу Тейлора для многочлена можно записать так:  $latex f(x)\approx f(x_{0})+\frac{f'(x_{0})}{1!}(x-x_{0})+\frac{f»(x_{0})}{2!}(x-x_{0})^{2}+…+\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n} &s=1$.

Важна форма записи остаточного члена:

$latex r_{n}(x_{0},x)=\frac{f^{(n+1)}(\xi )}{(n+1)!}(x-x_{0})^{n+1} &s=1 $.

$latex r_{n}(x_{0},x) &s=1 $ — определяет погрешность формулы. Если же $latex f(x) &s=1 $ вычисляется по формуле при конкретном числовом значении $latex x &s=1 $, то может оказаться, что слагаемые в этой формуле сами вычисляются приближённо. Тогда погрешность результата будет состоять из погрешности слагаемых и погрешности формулы. Если вычислять все слагаемые с одинаковой точностью $latex \alpha _{0} &s=1 $ (погрешностью формулы), то общая погрешность результата равна $latex (n+2)\alpha _{0} &s=1 $.

Пусть $latex \alpha &s=1 $ — заранее известная точность результата. Тогда следует преобразовать $latex \alpha _{0} &s=1 $ так, чтобы обеспечить выполнение неравенства   $latex (n+2)\alpha _{0}\leq\alpha &s=1 $, то есть $latex \alpha_{0}\leq\frac{\alpha}{n+2} &s=1 $. При достаточно малых $latex n &s=1 $, например, $latex n\leq8 &s=1 $: $latex \alpha_{0}=\frac{\alpha}{10}\leq\frac{\alpha}{n+2} &s=1 $.

Обычно точность вычислений $latex \alpha &s=1 $ задается в виде: $latex \alpha=10^{-m} \Rightarrow \alpha_{0}=10^{-(m+1)} &s=1 $. Это значит, что вычисления нужно проводить с одним запасным знаком. Мы установили, что один запасной знак обеспечит требуемую точность при $latex n\leq8 &s=1 $.

Пример

Вычислить $latex e^{0,1} &s=1 $ с точностью до $latex \alpha=0,001=10^{-3} &s=1 $.

Решение

Оценкой определим, в какой точке удобнее раскладывать исходную функцию (найдём ближайшую к необходимой точку, где известно точное значение функции):

$latex 0\leq0,1\leq0,5 \Rightarrow x\in[0;0,5] &s=1 $

Выпишем формулу Тейлора:

$latex e^{x}=1+x+\frac{1}{2}x^{2}+…+\frac{x^{n}}{n!}+\frac{e^{\xi }}{(n+1)!}x^{n+1} &s=1 $;

Выполним вычисление по формуле Тейлора, разложив функцию в точке $latex x_{0}=0 &s=1 $

Выполним оценку погрешности:

$latex r_{n}(0,x)=\left | \frac{e^{\xi }x^{n+1}}{(n+1)!} \right |=\frac{e^{\xi} \left | x \right |^{n+1}}{(n+1)!}\leq\frac{\sqrt{e}x^{n+1}}{(n+1)!} \leq \frac{2x^{n+1}}{(n+1)!} &s=2 $

Оценим сверху:

$latex \frac{2x^{n+1}}{(n+1)!}\leq \frac{1}{10} &s=2 $

Перенесём 2 в правую часть и выполним обозначение:

$latex \frac{x^{n+1}}{(n+1)!}\leq 0.5*10^{-1}\alpha=\frac{\alpha}{20} &s=2 $.

Эта запись удобна тем, что вычисляя последовательность слагаемых $latex U_{k}=\frac{x^{k}}{k!} &s=1 $ мы имеем возможность одновременно видеть достигнута ли требуемая точность.

По условию:

$latex \alpha=10^{-3} &s=1 $

Подставим в оценку, сделанную ранее:

$latex \frac{x^{n+1}}{(n+1)!}\leq 0,00005 &s=2 $

Для $latex U_{k}=\frac{x^{k}}{k!} &s=1 $ полагаем $latex k=0,1,2,… &s=1 $

$latex x=0,1 \Rightarrow U_{0}=1; U_{1}=0,1; U_{2}=0,005;$

$latex U_{3}=0,0002; U_{4}=0,00005 &s=1$ — выбранное значение $latex k $ подходит.

$latex e^{0,1}\approx 1+0,1+0,005+0,0002+0,00005=1,105 &s=1 $

$latex e^{0,1}\approx1,105 &s=1 $

Неравенство $latex \frac{x^{n+1}}{(n+1)!}\leq0,00005 &s=2 $ оказалось выполненным при $latex k=n+1=4 &s=1 $, $latex n=3 &s=1 $.

Источники:

 

 

Единственность полинома Тейлора

Теорема о единственности полинома Тейлора

  Если существует [latex]f^{(n)}(x_{0})[/latex] и при [latex]x\rightarrow x_{0} [/latex] [latex]f[/latex] представима в виде [latex]f(x)=a_{0}+ [/latex] [latex] a_{1}(x-x_{0})+… [/latex] [latex] +a_{n}(x-x_{0})^{n}+ [/latex] [latex] O((x-x_{0})^{n})[/latex], то многочлен [latex]A=a_{0}+[/latex][latex]a_{1}(x-x_{0})+… [/latex] [latex] +a_{n}(x-x_{0})^{n}[/latex] и будет многочленом Тейлора в точке [latex]x_{0}[/latex], то есть [latex]a_{k}=\cfrac{f^{(k)}(x_{0})}{k!}[/latex].

Доказательство.

$latex f(x)=f(x_{0})+ $ $latex \frac{f'(x_{0})}{1!}(x-x_{0})+…$ $latex +\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}+$ $latex O((x-x_{0})^{n}) &s=1 .$

Приравниваем:

$latex f(x_{0})+$ $latex \frac{f'(x_{0})}{1!}(x-x_{0})+…$ $latex +\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}+$ $latex O((x-x_{0})^{n})=$ $latex a_{0}+a_{1}(x-x_{0})+…$ $latex +a_{n}(x-x_{0})^{n}+$ $latex O((x-x_{0})^{n}) &s=1 $.

Берем предел обеих частей при [latex]x\rightarrow x_{0} [/latex]. Получаем, что:

$latex \frac{f'(x_{0})}{1!}(x-x_{0})\rightarrow 0 &s=1 ;$

$latex \frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}\rightarrow 0 &s=1 ;$

$latex O((x-x_{0})^{n})\rightarrow 0 &s=1 ;$

$latex a_{1}(x-x_{0})\rightarrow 0 &s=1 ;$

$latex a_{n}(x-x_{0})^{n}\rightarrow 0 &s=1 ;$

$latex O((x-x_{0})^{n})\rightarrow 0 &s=1 ;$

$latex f(x_{0})=a_{0} &s=1 .$

Отбрасываем первые слагаемые в обеих частях уравнения:

[latex] \cfrac{f'(x_{0})}{1!}(x-x_{0})+…[/latex][latex]+\cfrac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}+[/latex][latex]O((x-x_{0})^{n})=[/latex][latex] a_{1}(x-x_{0})+…[/latex][latex]+a_{n}(x-x_{0})^{n}+[/latex][latex]O((x-x_{0})^{n})\mid /(x-x_{0}) .[/latex]

[latex] \cfrac{f'(x_{0})}{1!}+…[/latex][latex]+\cfrac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n-1}+[/latex][latex]O((x-x_{0})^{n-1})=[/latex][latex]a_{1}+[/latex][latex]a_{2}(x-x_{0})+…[/latex][latex]+a_{n}(x-x_{0})^{n-1}+[/latex][latex]O((x-x_{0})^{n-1})\mid \lim\limits_{x\rightarrow x_{0}}(\cdot ) .[/latex]

Получаем:

$latex \cfrac{f'(x_{0})}{1!}=a_{1} &s=1 $.

Проделываем те же действия, что и ранее, получаем:

$latex a_{k}=\cfrac{f^{(k)}(x_{0})}{k!} &s=1 $.

Следовательно разложение по формуле Тейлора однозначно.

Замечание:

Пусть [latex]f(x)[/latex] — бесконечно дифференцируема в точке [latex]0[/latex].

  1. Если функция [latex]f(x)[/latex] — четная, то [latex]f'[/latex] — нечетная, [latex]f»'[/latex] — нечетная, …, [latex]f^{(2n+1)}[/latex] — нечетная, а так как нечетная функция в 0 всегда принимает значение, равное 0, то [latex]f'(0)=f»'(0)=…[/latex] [latex] =f^{(2n+1)}(0)=0[/latex].
  2. Если функция [latex]f(x)[/latex] — нечетная, то [latex]f»[/latex] — нечетная, …, [latex]f^{(2n)}[/latex] — нечетная, а так как нечетная функция в 0 всегда принимает значение, равное 0, то [latex]f»(0)=…= f^{(2n)}(0)=0[/latex].

Вывод:

Если [latex]f(x)[/latex] — четная, то формула Тейлора будет для нее содержать только четные степени, если [latex]f(x)[/latex] — нечетная, то формула Тейлора будет разлагаться только по нечетным степеням.

Источники:

Тест по теме: единственность полинома Тейлора

Проверьте себя на знание теоретического материала по теме: единственность полинома Тейлора.


Таблица лучших: Тест по теме: единственность полинома Тейлора

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных