Ф703. О времени полёта ракеты

Задача из журнала «Квант» (1982 год, 3 выпуск)

Условие

Ракета запущена с поверхности Земли вертикально вверх с первой космической скоростью и возвращается на Землю недалеко от места старта. Сколько времени она находилась в полёте? Радиус Земли $R=6400$ км.

Примечание. Площадь эллипса с полуосями $a$ и $b$ равна $S=\pi ab.$

Решение

Траектория ракеты представляет собой часть очень вытянутого эллипса, в одном из фокусов которого находится центр Земли (см. рисунок). Скорость ракеты в верхней точке $D$ траектории почти равна нулю.

Траектория ракеты

Согласно закону сохранения энергии: $$\frac{mv_0^2}2-G\frac{Mm}R\approx-G\frac{Mm}{2b}. \tag{$\cdot$}$$Здесь $M$ — масса Земли, $m$ — масса ракеты, $v_0=\sqrt{\displaystyle\frac{GM}{R}}$ — начальная скорость ракеты (первая космическая скорость); $-G\displaystyle\frac{Mm}R$ и $-G\displaystyle\frac{Mm}{2b}$ — потенциальная энергия ракеты у поверхности Земли (при запуске) и в верхней точке траектории. Из $(\cdot)$ найдем большую полуось эллипса: $b\approx r.$

Из третьего закона Кеплера (квадраты периодов обращения по эллиптическим траекториям относятся как кубы больших полуосей эллипсов) следует, что полное время $T_э$ движения ракеты по всему эллипсу было бы равно периоду $T_0$ обращения спутника, движущегося по круговой орбите вблизи поверхности Земли, то есть $$T_э=T_0=\frac{2\pi R}{\sqrt{\displaystyle\frac{GM}{R}}}=2\pi\sqrt{\displaystyle\frac{R}{g}}.$$Из второго закона Кеплера (радиус-вектор, соединяющий тело, движущееся под действием силы тяготения по замкнутой орбите, с центром притяжения, за равные промежутки времени заметает равные площади) следует, что отношение времени движения $T$ по половине эллипса (участок $BDC$) к полному периоду $T_э$ равно отношению площади заштрихованной на рисунке фигуры $OBDC$ к полной площади эллипса:$$\frac T{T_э}=\frac{{\displaystyle\frac12}\pi ab+ab}{\pi ab}.$$ Отсюда находим время полёта $T:$ $$T=T_э\bigg(\frac12+\frac{1}{\pi}\bigg)=(\pi+2)\sqrt{\displaystyle\frac Rg}\approx\;1\;ч.\;9\;мин.$$

Е. Сурков