Обобщённый гармонический ряд

Обобщённым гармоническим рядом называют ряд:$$\sum_{n=1}^{\infty }\frac{1}{n^{\alpha}}=1+\frac{1}{2^{\alpha}}+\frac{1}{3^{\alpha}}+\cdots +\frac{1}{n^{\alpha}}+\cdots $$

Сходимость обобщённого гармонического ряда

$$\sum_{n=1}^{\infty }\frac{1}{n^{\alpha }},$$ где [latex]\alpha>0[/latex]. При [latex]\alpha=1[/latex] получаем гармонический ряд, а он как известно расходится.
При [latex]0<\alpha<1[/latex] имеем:$$S_{n}(\alpha)=1+ \frac{1}{2^{\alpha}}+\cdots +\frac{1}{n^{\alpha}}\geq n \cdot \frac{1}{n^{\alpha}}=n^{1-\alpha}\underset{n\rightarrow \infty }{\rightarrow}\infty $$ Из этого следует, что [latex]S_{n}(\alpha)\rightarrow +\infty [/latex], а из этого следует расходимость ряда.
Теперь рассмотрим случай [latex]\alpha>1[/latex]. Выберем такое натуральное [latex]m[/latex], что [latex]n<2^{m}[/latex]. Тогда имеем:$$S_{n}(\alpha)\leq S_{2^{m}-1}(\alpha)=1+\left ( \frac{1}{2^{\alpha}}+\frac{1}{3^{\alpha}} \right )+\left ( \frac{1}{4^{\alpha}}+\frac{1}{5^{\alpha}}+\frac{1}{6^{\alpha}}+\frac{1}{7^{\alpha}} \right )+$$$$+\cdots +\left ( \frac{1}{(2^{m-1})^{\alpha}}+\frac{1}{(2^{m-1}+1)^{\alpha}}+\cdots +\frac{1}{(2^{m}-1)^{\alpha}} \right )\leq $$$$\leq 1+2^{1-\alpha}+(2^{2})^{1-\alpha}+\cdots +(2^{m-1})^{1-\alpha}=$$$$=1+2^{1-\alpha}+(2^{1-\alpha})^{2}+\cdots +(2^{1-\alpha})^{m-1}=\frac{1-(2^{1-\alpha})^{m}}{1-2^{1-\alpha}}$$ Отсюда следует, что при [latex]\alpha>1[/latex] имеем [latex]S_{n}(\alpha)\leq \frac{1}{1-2^{1-\alpha}}[/latex], т.е. последовательность частичных сумм ограниченна сверху, и по теореме о сходимости рядов с неотрицательными членами ряд сходится при [latex]\alpha>1[/latex].

Список Литературы

Тест на проверку знаний по данной теме.

Таблица лучших: Обобщённый гармонический ряд

максимум из 2 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Гармонический ряд

Гармоническим называется ряд:$$\sum_{n=1}^{\infty}\frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{n}+\cdots,$$ т.е. гармонический ряд состоит из членов, обратных числам натурального ряда.

Сходимость Гармонического ряда

Проверим гармонический ряд на сходимость:
Общий член гармонического ряда стремится к 0.$$\lim_{n\rightarrow \infty }\frac{1}{n}=0$$ Это показывает, что необходимое условие сходимости ряда выполняется. Для доказательства сходимости гармонического ряда будем использовать критерий Коши. По критерию Коши для того чтобы ряд сходился необходимо и достаточно чтобы:$$\forall \varepsilon >0, \exists N_{\varepsilon },\forall n>N_{\varepsilon },\forall p > 0:\left | \frac{1}{n+1}+\frac{1}{n+2}+\cdots +\frac{1}{n+p} \right |<\varepsilon$$ В качестве [latex]\varepsilon[/latex] выберем [latex]\frac{1}{2}[/latex] и [latex]p=n[/latex]. Тогда:$$\left | \frac{1}{n+1}+\frac{1}{n+2}+\cdots +\frac{1}{n+p} \right |=\left | \frac{1}{n+1}+\frac{1}{n+2}+\cdots +\frac{1}{2n} \right |>$$$$>\left | \frac{1}{2n}+\frac{1}{2n}+\cdots +\frac{1}{2n} \right |=\frac{1}{2}=\varepsilon$$ Из этого следует что гармонический ряд не удовлетворяет критерию Коши. Иначе говоря гармонический ряд расходится.
grad

Связанные ряды

Обобщённый гармонический ряд

Обобщённым гармоническим рядом называется ряд:$$\sum_{n=1}^{\infty}\frac{1}{n^{\alpha }}=1+\frac{1}{2^{\alpha }}+\frac{1}{3^{\alpha }}+\cdots +\frac{1}{n^{\alpha }}+\cdots$$ Обобщённый гармонический ряд расходится при [latex]\alpha\leq 1[/latex] и сходится при[latex]\alpha>1[/latex]

Список Литературы

Тест на проверку знаний по данной теме.

Таблица лучших: Гармонический ряд

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных