М605. Задача о преобразовании плоскости

Условие

На плоскости отмечены $2n + 1$ различных точек. Занумеруем их числами $1, 2, \ldots, 2n + 1$ и рассмотрим следующее преобразование $R$ плоскости: сначала делается симметрия относительно первой точки, затем относительно второй и т. д. — до $\left(2n + 1\right)$-й точки.

а) Покажите, что y этого преобразования $R$ есть единственная «неподвижная точка» (точка, которая отображается в себя).

Рассмотрим всевозможные способы нумерации наших $2n + 1$ точек (числами $1, 2, \ldots, 2n + 1$). Каждой такой нумерации соответствует свое преобразование плоскости $R$ и своя неподвижная точка. Пусть $F$ — множество неподвижных точек всех этих преобразований.

б) Укажите множество $F$ для $n = 1$.

в) Какое максимальное и какое минимальное количество точек может содержать множество $F$ при каждом $n = 2, 3, \ldots$

Решение

Фиксируем произвольную систему координат.

Пусть точки $A\left(x; y\right)$ и $A^*\left(x^*; y^*\right)$ симметричны относительно точки $A’\left(x’; y’\right)$. Тогда $x’ = \frac{\left(x + x^*\right)}{2}, y’ = \frac{\left(y + y^*\right)}{2},$ откуда $$x^* = 2x’ — x, y^* = 2y’ — y.$$

Таким образом, точка с координатами $\left(x; y\right)$ при симметрии относительно точки с координатами $\left(x’; y’\right)$ переходит в точку с координатами $\left(2x’ — x; 2y’ — y\right)$.

Поэтому при нашем преобразовании $R$ точка с координатами $\left(x; y\right)$ перейдет в точку с координатами $\left(-x + 2x_1 — 2x_2 + \cdots + 2x_{2n + 1}; -y + 2y_1 — 2y_2 + \cdots + 2y_{2n + 1}\right),$ где $\left(x_i; y_i\right)$ — координаты $i$-й из заданных $2n + 1$ точек.

a) Для неподвижной точки $\left(x; y\right)$ преобразования $R$ эти координаты определяются однозначно из условия $$ \begin{cases}-x + 2x_1 — 2x_2 + \cdots + 2x_{2n + 1} = x \\ -y + 2y_1 — 2y_2 + \cdots + 2y_{2n + 1} = y\end{cases}$$ и равны $\left(x_1 — x_2 + \cdots — x_{2n} + x_{2n + 1}; y_1 — y_2 + \cdots — y_{2n} + y_{2n + 1}\right)$ или $$\left(\sum_{i = 1}^{2n + 1} \left(-1\right)^{i — 1} x_i; \sum_{i = 1}^{2n + 1} \left(-1\right)^{i — 1} y_i\right) \tag{*}$$ Утверждение a) доказано.

б) Пусть сначала данные точки $X_1, X_2, X_3$ не лежат на одной прямой. Если точка $A_1$ после симметрии относительно точек $X_1, X_2, X_3$ отобразилась в себя (см. рисунок), то $X_1, X_2, X_3$ — середины отрезков $A_1A_2, A_2A_3, A_3A_1$, где $A_2 = SX_1\left(A_1\right)$, $A_3 = SX_2\left(A_2\right)$. Значит, $\left[A_1A_2\right]$, $\left[A_2A_3\right]$, $\left[A_3A_1\right]$ — медианы треугольника $A_1A_2A_3$, так что точки $A_1, A_2, A_3$ можно получить из точек $X_1, X_2, X_3$ гомотетией с центром в центре тяжести $O$ треугольника $X_1X_2X_3$ и коэффициентом $(—2)$. Этим положение точек $A_i \left(i = 1, 2, 3\right)$ определяется однозначно. С другой стороны, каждая точка $A_i$ при соответствующей композиции симметрий относительно точек $X_i$, отображается в себя (например, $SX_2\left(SX_1\left(SX_3\left(A_3\right)\right)\right) = A_3$). Поэтому множество $F$ — это три точки, получающиеся из данных точек $X_1, X_2, X_3$ гомотетией с центром $O$ и коэффициентом $(-2)$. Легко видеть, что, если данные точки $X_1, X_2, X_3$ лежат на прямой, ответ получается, в разумном смысле, тот же.

в) Глядя на выражение $(*)$, нетрудно сообразить, что в множестве $F$ точек не больше, чем число способов выбрать из $2n + 1$ данных точек те $n$ точек, перед абсциссами которых в выражении $(*)$ будет стоять знак «минус», то есть не больше, чем $C^n_{2n + 1}$. Очевидно, эта оценка точна (возьмите, например, $2n + 1$ точек на одной прямой с целыми координатами $1, 2, 2^2, \ldots, 2^{2n}$).

Оценим теперь число неподвижных точек снизу. Спроектируем данные $2n + 1$ точек на прямую так, чтобы никакие две точки не попали в одну. На этой прямой введем координаты и перенумеруем точки в порядке возрастания координат: $x_1 < x_2 < \ldots < x_{2n + 1}$. Поставим $n$ минусов перед первыми $n$ числами и рассмотрим сумму $- x_1 — x_2 — \cdots — x_n + x_{n + 1} + \cdots + x_{2n + 1}$: она будет соответствовать некоторой неподвижной точке из нашего множества $F$. Далее произведем следующую операцию: выберем пару чисел $x_i$ и $x_{i + 1}$ таких, что перед $x_i$ стоит минус, а перед $x_{i + 1}$ — плюс, и поменяем у них знаки (на первом шаге, очевидно, $i = n$). Каждая такая операция приводит к сумме, соответствующей неподвижной точке из множества $F$, причем, поскольку после каждой такой операции сумма уменьшатся, все эти неподвижные точки различны. Всего таких операций (вне зависимости от их порядка) мы можем произвести $n\left(n + 1\right)$, что уже даст нам $n\left(n + 1\right) + 1$ неподвижных точек. Значит, в $F$ точек не меньше $n\left(n + 1\right) + 1$. Ровно столько неподвижных точек получится, если, например, снова взять $2n + 1$ точек на прямой с целыми координатами $-n, -\left(n — 1\right), \ldots, -1, 0, 1, 2, \ldots, n — 1, n$. При всевозможных способах расстановки $n$ «минусов» перед некоторыми из них максимальное значение суммы этих чисел равно $2 \cdot \left(1 + 2 + \cdots + n\right) = n(n + 1)$, минимальное значение равно $-n\left(n + 1\right)$, причем сумма может принимать любое четное значение между числами $-n\left(n + 1\right)$ и $n\left(n + 1\right)$ — всего $n\left(n + 1\right) + 1$ значений.

И. Клумова, А. Талалай

М704. О квадрате, вокруг которого описан параллелограмм

Задача из журнала «Квант» (1981 год, 9 выпуск)

Условие

Вокруг квадрата описан параллелограмм (вершины квадрата лежат на разных сторонах параллелограмма). Докажите, что перпендикуляры, опущенные из вершин параллелограмма на стороны квадрата, образуют новый квадрат $(рис. 1).$

Решение

Пусть вокруг черного квадрата $(см. рис. 1)$ описан голубой параллелограмм $ABCD$ и через все его вершины проведены красные прямые, перепендикулярные сторонам квадрата. Достаточно доказать, что при повороте на $90^{\circ}$ вокруг центра $O$ черного квадрата красные прямые переходят друг в друга.

                                              $ Рис. 1.$

Пусть $H = R_{0}^{90^{\circ}}(A).$ Поскольку стороны повернутого параллелограмма перпендикулярны сторонам исходного, $(HE)\perp (AB)$ и $(HF)\perp (BC).$ Поэтому $H$ — точка пересечения высот треугольника $EBF$ и, следовательно, $H$ лежит на красной прямой, проведенной через вершину $B.$ Таким образом, красная прямая, проведенная через точку $A,$ переходит при повороте $R_{0}^{90^{\circ}}$ в красную прямую, проведенную через точку $B.$ Отсюда немедленно следует утверждение задачи.

Теорема о том, что три высоты треугольника пересекаются в одной точке (мы надеемся, известная нашим читателям), не доказывается в школьном учебнике. Поэтому мы приведем еще одно решение задачи $M704,$ хотя и не столь изящное, но тоже простое.

Это решение годится и для более общего случая, когда роль квадрата играет черный параллелограмм $(рис. 2):$ мы докажем, что красные прямые (соответственно параллельные сторонам черного параллелограмма) образуют параллелограмм, гомотетичный черному параллелограмму.

                                $ Рис. 2.$

Для доказательства достаточно проверить, что красная точка $K$ (см. рисунок 3 — фрагмент рисунка 2) лежит на диагонали параллелограмма $EG.$ Из подобия заштрихованных треугольников следует, что $\frac{x}{a} = \frac{b}{v}$ и $\frac{a}{y} = \frac{u}{b}$ (обозначения см. на рисунке 3). Перемножив эти равенства, получим $\frac{x}{y} = \frac{u}{v},$ а это и значит, что точка $K$ лежит на $EG.$

                                      $ Рис. 3.$

Полученный результат напоминает теорему Паппа, которую $Д.~ Гильберт$ и $С.~ Кон-Фоссен$ в своей замечательной (переизданной недавно по-русски) книге «Наглядная геометрия» формулируют так $(с. 126—127):$ если вершины замкнутой шестизвенной ломаной лежат попеременно на двух прямых и две пары ее противоположных звеньев параллельны, то и третья пара звеньев параллельна (на рисунке 3 — как раз такая ломаная $AKBEFGA$).

На этом возможности обобщений не исчерпаны. Если «сфотографировать» конфигурацию рисунка 3 (то есть спроектировать ее из некоторой точки $S,$ не лежащей в плоскости рисунка, на непараллельную плоскость), мы получим конфигурацию Паскаля: три пары параллельных на рисунке 3 прямых будут пересекаться на «фотографии» в трех точках одной прямой — нам удобно обозначить их $A_{1},$ $F_{1}$, $B_{1}$ $(рис. 4)$ — и наша теорема о точках $E,$ $K,$ $G$ превратиться в такую теорему: если каждая тройка точек $A,$ $B,$ $F$ и $A_{1},$ $B_{1},$ $F_{1}$ лежит на прямой, то точки $(AB_{1})\cap (A_{1}B),$ $(BF_{1})\cap (B_{1}F)$ и $(AF_{1})\cap (A_{1}F)$ также лежат на прямой.                                                $Рис. 4.$

Н.Васильев

 

М728. Задача о параллелепипеде

Задача из журнала «Квант». Выпуск №2 1982 года.

М728. Пусть $A$, $B$, $C$ — вершины параллелепипеда, соседние с его вершиной $P$, а $Q$ — вершина, противоположная $P$. Докажите, что:

а) расстояния от точек $A$, $B$, $C$ до прямой $PQ$ могут служить длинами сторон некоторого треугольника;

б) площадь $S$ этого треугольника, объем $V$ параллелепипеда и длина $d$ его диагонали $PQ$ связаны соотношением $V=2dS$.

Решение

Плоскости $PQA, PQB$ и $PQC$ разрезают параллелепипед на 6 долек — тетраэдров. (Один из них — тетраэдр $PQAD$ — выделен на рисунке красным цветом.) Мы доказываем, что объем каждой «дольки» равен $\frac{1}{3}dS$.

Рассмотрим, например, тетраэдр $PQAD$. Его объем не изменится, если сдвинуть вершину $A$ по прямой $AA’$, параллельной диагонали $PQ$. В самом деле, вершины $P, Q$ и $D$ при этом остаются неподвижными, а расстояние от вершины $A$ до плоскости $PQD$ не меняется. Ясно, что и при перемещении точки $D$ вдоль прямой $DD’,$ параллельной $(PQ)$, объем тетраэдра сохранится. Сдвинем теперь вершины $A$ и $D$ в точки $A’$ и $D’$ так, чтобы плоскость $PA’D’$ стала перпендикулярной диагонали $PQ$ (см. рисунок).

а) Поскольку отрезок $A’P$ перпендикулярен к прямой $PQ$, его длина равна расстоянию от точки $A’$ до этой прямой, то есть расстоянию от точки $A$ до $(PQ)$. Точно так же, длина отрезка $D’A’$ равна расстоянию от точки $D$ до прямой $AA’$. При параллельном переносе $\overrightarrow{DB}=\overrightarrow{AP}$ точка $D$ переходит в $B$, а прямая $AA’$ — в $(PQ)$, поэтому $|D’A’|$ — это расстояние от точки $B$ до $(PQ)$. Аналогично доказывается, что $|PD’|$ — это расстояние от точки $C$ до $(PQ)$. Таким образом, длины сторон треугольника $PA’D’$ равны расстояниям от точек $A$, $B$, $C$ до прямой $(PQ)$. По условию его площадь равна $S$.

б) Как мы видели, объем тетраэдра $PQAD$ равен объему тетраэдра $PQA’D’$. Площадь основания $PA’D’$ этого тетраэдра равна $S$, а высота равна длине $d$ ребра $PQ$, так как оно перпендикулярно основанию, Таким образом, $V_{PQAD}=\frac{1}{3}dS$, а объем параллелепипеда $V=6\cdot\frac{1}{3}dS=2dS$.

В. Дубровский

М658. О разбиении квадрата отрезками

Задача из журнала «Квант» (1980 год, 12 выпуск)

Условие

В квадрате со сторо­ной $1$ проведено конечное чис­ло отрезков (рис. $1$), парал­лельных его сторонам. Отрез­ки могут пересекать друг друга. Сумма длин проведен­ных отрезков равна $18$. Дока­жите. что среди частей, на которые квадрат разбивается этими отрезками, найдется такая, площадь которой не меньше $0.01$

Решение

Сумма длин границ всех частей, на которые квадрат разбит отрезками, равна $2 \cdot 18+4=40 $ (длины проведенных отрезков входят в эту сумму по два раза, длины сторон квадрата — по одному). Пусть для $i$-й части сумма длин горизонтальных границ равна $x _{i}$, вертикальных — $2y_{i}$, а площадь $i$-й части равна $c_{i}^{2}$ $\left( c_{i} > 0 \right)$ : тогда $x _{i}y_{i} \geq c_{i}^{2}$ (рис. $2$), поэтому $x_{i}+y_{i}\geq2\sqrt{ x_{i}y_{i}} \geq 2c_{i}$. Итак, $40= \sum (2x_{i}+2y_{i})\geq4 \sum c_{i}$, откуда $ \sum c_{i}\leq10$ (здесь сумма $\sum$ берется но всем частям разбиении).

Если $c_{i}^{2}<0.01$ (то есть $c_{i}<0.1$) для всех $i$, то $1= \sum c_{i}^{2} < \sum 0.1 c_{i} = 0.1 \sum c_{i}$ , откуда $\sum c_{i}\geq10$. Противоречие. Очевидно, оценка $18$ — точная: восемнадцатью отрезками длины $1$ наш квадрат можно разбить на $100$ одинаковых квадратиков площади $0.01$ каждый.

А.Анджан

М690. Задача о выпуклых многоугольниках

Задача о выпуклых многоугольниках

Условие

а) Внутри выпуклого многоугольника площади $S_1$ и периметра $P_1$ расположен выпуклый многоугольник площади $S_2$ и периметра $P_2$. Докажите неравенство $$2\dfrac{S_1}{P_1}>\dfrac{S_2}{P_2}$$.

б)Сформулируйте и докажите аналогичное утверждение для выпуклых многогранников.

Решение

а) Заметим сначала, что для треугольников справедливо более сильное утверждение $\dfrac{S_1}{P_1}>\dfrac{S_2}{P_2}$. Это почти очевидно, так как $\dfrac{2S_1}{P_1}$ и $\dfrac{2S_2}{P_2}$ — радиусы кругов, вписанных в эти треугольники.

Для доказательства общего утверждения воспользуемся двумя фактами, которые мы докажем ниже:

  1. Во всякий выпуклый многоугольник площади $S$ и периметра $P$ можно поместить круг радиуса $R>\dfrac{S}{P}$;
  2. Для любого круга, содержащегося в данном многоугольнике $R\leqslant\dfrac{2S}{P}$.

Из $1.$ и $2.$ сразу следует утверждение а): поместим во внутренний многоугольник круг радиуса $R>\dfrac{S_2}{P_2}$; поскольку $R\leqslant\dfrac{2S_1}{P_1}$, получаем требуемое.

Докажем $1.$ Построим на каждой стороне (выпуклого) многоугольника прямоугольник с высотой $h = \dfrac{S}{P}$ (рис. $1$; $S$ — площадь, $P$ — периметр многоугольника). Эти прямоугольники перекрываются: они могут даже «вылезать» за пределы многоугольника. Поскольку суммарная площадь прямоугольников равна $S$, площадь покрытой ими части многоугольника меньше $S$. Поэтому найдётся непокрытая точка, удаленная от всех сторон на расстояние $R>h$

Рис. $1$

Докажем $2.$ Пусть $O$ — центр круга радиуса $R$, содержащегося в многоугольнике (рис. $2$). Поскольку длины высот треугольников с вершиной $O$, основаниями которых служат стороны многоугольника не меньше $R$, получаем $S\geqslant\dfrac12PR$. Поэтому $R\leqslant\dfrac{2S}{P}$. (Заметим, что если для какого-то круга, содержащегося в многоугольнике, $R=\dfrac{2S}{P},$ то этот круг вписан в многоугольник — докажите это!).

Рис. $2$

В пространственном случае можно доказать, что если выпуклый многогранник объёма $V_1$ и площади поверхности $S_1$ содержит выпуклый многогранник объёма $V_2$ и площади поверхности $S_2$, то $3\dfrac{V_1}{S_1}>\dfrac{V_2}{S_2}$.

Доказательство получается заменой слов: периметр — площадь поверхности, площадь — объём, круг — шар, треугольник — пирамида, прямоугольник — призма. Заметим, что константы $2$ (для плоского случая) и $3$ (для пространственного) нельзя заменить меньшими. Примеры, подтверждающие это, показаны на рисунках $3$ и $4$ (узкий прямоугольник внутри узкого длинного прямоугольника и узкая призма внутри узкой высокой призмы).

А. Келарев