М704. О квадрате, вокруг которого описан параллелограмм

Задача из журнала «Квант» (1981 год, 9 выпуск)

Условие

Вокруг квадрата описан параллелограмм (вершины квадрата лежат на разных сторонах параллелограмма). Докажите, что перпендикуляры, опущенные из вершин параллелограмма на стороны квадрата, образуют новый квадрат $(рис. 1).$

Решение

Пусть вокруг черного квадрата $(см. рис. 1)$ описан голубой параллелограмм $ABCD$ и через все его вершины проведены красные прямые, перепендикулярные сторонам квадрата. Достаточно доказать, что при повороте на $90^{\circ}$ вокруг центра $O$ черного квадрата красные прямые переходят друг в друга.

                                              $ Рис. 1.$

Пусть $H = R_{0}^{90^{\circ}}(A).$ Поскольку стороны повернутого параллелограмма перпендикулярны сторонам исходного, $(HE)\perp (AB)$ и $(HF)\perp (BC).$ Поэтому $H$ — точка пересечения высот треугольника $EBF$ и, следовательно, $H$ лежит на красной прямой, проведенной через вершину $B.$ Таким образом, красная прямая, проведенная через точку $A,$ переходит при повороте $R_{0}^{90^{\circ}}$ в красную прямую, проведенную через точку $B.$ Отсюда немедленно следует утверждение задачи.

Теорема о том, что три высоты треугольника пересекаются в одной точке (мы надеемся, известная нашим читателям), не доказывается в школьном учебнике. Поэтому мы приведем еще одно решение задачи $M704,$ хотя и не столь изящное, но тоже простое.

Это решение годится и для более общего случая, когда роль квадрата играет черный параллелограмм $(рис. 2):$ мы докажем, что красные прямые (соответственно параллельные сторонам черного параллелограмма) образуют параллелограмм, гомотетичный черному параллелограмму.

                                $ Рис. 2.$

Для доказательства достаточно проверить, что красная точка $K$ (см. рисунок 3 — фрагмент рисунка 2) лежит на диагонали параллелограмма $EG.$ Из подобия заштрихованных треугольников следует, что $\frac{x}{a} = \frac{b}{v}$ и $\frac{a}{y} = \frac{u}{b}$ (обозначения см. на рисунке 3). Перемножив эти равенства, получим $\frac{x}{y} = \frac{u}{v},$ а это и значит, что точка $K$ лежит на $EG.$

                                      $ Рис. 3.$

Полученный результат напоминает теорему Паппа, которую $Д.~ Гильберт$ и $С.~ Кон-Фоссен$ в своей замечательной (переизданной недавно по-русски) книге «Наглядная геометрия» формулируют так $(с. 126—127):$ если вершины замкнутой шестизвенной ломаной лежат попеременно на двух прямых и две пары ее противоположных звеньев параллельны, то и третья пара звеньев параллельна (на рисунке 3 — как раз такая ломаная $AKBEFGA$).

На этом возможности обобщений не исчерпаны. Если «сфотографировать» конфигурацию рисунка 3 (то есть спроектировать ее из некоторой точки $S,$ не лежащей в плоскости рисунка, на непараллельную плоскость), мы получим конфигурацию Паскаля: три пары параллельных на рисунке 3 прямых будут пересекаться на «фотографии» в трех точках одной прямой — нам удобно обозначить их $A_{1},$ $F_{1}$, $B_{1}$ $(рис. 4)$ — и наша теорема о точках $E,$ $K,$ $G$ превратиться в такую теорему: если каждая тройка точек $A,$ $B,$ $F$ и $A_{1},$ $B_{1},$ $F_{1}$ лежит на прямой, то точки $(AB_{1})\cap (A_{1}B),$ $(BF_{1})\cap (B_{1}F)$ и $(AF_{1})\cap (A_{1}F)$ также лежат на прямой.                                                $Рис. 4.$

Н.Васильев

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *