Действия над комплексными числами в алгебраической форме
Спойлер
Комплексным числом [latex]z[/latex] называется число вида [latex]z=a+bi[/latex], где [latex]a[/latex] и [latex]b[/latex] – действительные числа, [latex]i[/latex] – так называемая мнимая единица. Число [latex]a[/latex] называется действительной частью [latex](Rez)[/latex] комплексного числа, число [latex]b[/latex] называется мнимой частью [latex](Imz)[/latex] комплексного числа.
Пусть [latex]z_1,z_2\in C[/latex], [latex]z_1=a_1+b_1i[/latex] и [latex]z_2=a_2+b_2i[/latex].
Тогда [latex]z=[/latex] [latex]z_1 \times z_2=[/latex] [latex](a_1+b_1i) \times (a_2+b_2i)[/latex].
Что делать на этом шаге? Все довольно просто, как Вы наверно и подумали, надо всего лишь раскрыть скобки и привести подобные:
[latex](a_1+b_1i) \times (a_2+b_2i)=[/latex] [latex](a_1a_2-b_1b_2)+(a_1b_2+a_2b_1)i[/latex]
Пусть [latex]z_1,z_2\in C[/latex], [latex]z_1=a_1+b_1i[/latex] и [latex]z_2=a_2+b_2i[/latex].
[latex]z_1[/latex] называют комплексно сопряженным к [latex]z_2[/latex], если [latex]a_1 = a_2[/latex] и [latex]b_1 = -b_2[/latex], т.е. [latex]z_1=a_1+b_1i[/latex] и [latex]z_2=a_1-b_1i[/latex].
И при перемножении [latex]z_1 \times z_2=[/latex] [latex]{a_1}^2-{b_1}^2[/latex]
Это потребуется для нашего следующего действия.
Деление
Пусть [latex]z_1,z_2\in C[/latex], [latex]z_1=a_1+b_1i[/latex] и [latex]z_2=a_2+b_2i[/latex].
Тогда [latex]z=[/latex] [latex]\frac{z_1}{z_2}=[/latex] [latex]\frac{a_1+b_1i}{a_2+b_2i}[/latex]
На этом шаге обычно все и остановилось бы, но мы сможем еще упростить выражение благодаря знанию комплексно сопряженных чисел. Умножим числитель и знаменатель на комплексно сопряженное число к знаменателю, получим:
[latex]\frac{(a_1+b_1i)(a_2-b_2i)}{(a_2+b_2i)(a_2-b_2i)}=[/latex] [latex]\frac{(a_1a_2+b_1b_2)+(a_2b_1-a_1b_2)i}{{a_2}^2+{b_2}^2}[/latex]
Спойлер
[latex]z_1=3+i[/latex] и [latex]z_2=3+2i[/latex]
[latex]\frac{z_1}{z_2}=[/latex] [latex]\frac{3+i}{3+2i}=[/latex] [latex]\frac{(3+i)(3-2i)}{9+4}=[/latex] [latex]\frac{9+2-6i+3i}{13}=[/latex] [latex]\frac{11-3i}{13}[/latex]
[свернуть]
Действия над комплексными числами в тригонометрической форме
Спойлер
Перед дальнейшим прочтением материала просмотрите информацию о тригонометрической форме комплексного числа
Любое комплексное число [latex]z[/latex] можно представить в виде:[latex]|z|(\cos\phi+ i\sin\phi)[/latex], где [latex]|z|[/latex] — это модуль комплексного числа, а [latex]\phi=arg z[/latex] — это аргумент комплексного числа. [latex]|z|=\sqrt{a^2+b^2}[/latex]
[свернуть]
Умножение
Произведением двух комплексных чисел [latex]z_1=r_1(cos\phi_1+isin\phi_1)[/latex] и [latex]z_2=r_2(cos\phi_2+isin\phi_2)[/latex] будет комплексное число вида [latex]z=z_1z_2=r_1r_2(\cos(\phi_1+\phi_2)+i\sin(\phi_1+\phi_2)[/latex]
Спойлер
[latex]z_1=3(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3})[/latex] и [latex]z_1=2(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2})[/latex]
[latex]z_1 \times z_2=[/latex] [latex]3(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}) \times 2(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2})=[/latex] [latex]6(\cos\frac{7\pi}{6}+i\sin\frac{7\pi}{6})[/latex]
[свернуть]
Деление
Частным двух комплексных чисел [latex]z_1=r_1(cos\phi_1+isin\phi_1)[/latex] и [latex]z_2=r_2(cos\phi_2+isin\phi_2)[/latex] будет комплексное число вида [latex]z=z_1z_2=\frac{r_1}{r_2}(\cos(\phi_1-\phi_2)+i\sin(\phi_1-\phi_2)[/latex]
Возведение в степень
[latex]\forall z \in C[/latex] [latex]z^n=[/latex] [latex]{r(\cos\phi+i\sin\phi)}^n=[/latex] [latex]r^n(\cos(n\phi)+i\sin(n\phi))[/latex]
[latex]\forall z \in C[/latex] [latex]\sqrt[n]{z}=[/latex] [latex]\sqrt[n]{r(\cos\phi+i\sin\phi)}=[/latex] [latex]\sqrt[n]{r}(\cos\frac{\phi+2\pi k}{n}+i\sin\frac{\phi+2\pi k}{n})[/latex], [latex]k=\overline{0,n-1}[/latex]
Спойлер
[latex]z=8(cos\frac{2\pi}{3}+isin\frac{2\pi}{3})[/latex]
[latex]\sqrt[3]{8(cos\frac{2\pi}{3}+isin\frac{2\pi}{3})}=[/latex] [latex]2\sqrt[3]{(cos\frac{2\pi}{3}+isin\frac{2\pi}{3})}=[/latex] [latex]2(\cos\frac{\frac{2\pi}{3}+2\pi k}{n}+i\sin\frac{\frac{2\pi}{3}+2\pi k}{n}), k=\{0,1,2\}[/latex]
[latex]2(\cos\frac{2\pi}{9}+i\sin\frac{2\pi}{9})[/latex] — это первый корень.
[latex]2(\cos\frac{\frac{2\pi}{3}+2\pi}{3}+i\sin\frac{\frac{2\pi}{3}+2\pi}{3})=[/latex] [latex]2(\cos\frac{8\pi}{9}+i\sin\frac{8\pi}{9})[/latex] — это второй корень
[latex]2(\cos\frac{\frac{2\pi}{3}+4\pi}{3}+i\sin\frac{\frac{2\pi}{3}+4\pi}{3})=[/latex] [latex]2(\cos\frac{14\pi}{9}+i\sin\frac{14\pi}{9})[/latex] — это третий корень
[свернуть]
Лимит времени: 0
Навигация (только номера заданий)
0 из 4 заданий окончено
Вопросы:
1
2
3
4
Информация
Тест поможет Вам проверить, как Вы усвоили материал
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Найти сумму двух комплексных чисел z1 и z2, где z1=5+6i, z2=8−4i:
z3=z1+z2=(5+8)+(6−4)i z3=13+2i
Найти произведение двух комплексных чисел z1 и z2, где z1=4+3i, z2=7+2i:
z3=z1⋅z2=(4⋅7−3⋅2)+(4⋅2+3⋅7)i z3=22+29i
Упростить выражение (1+i)(3+i)(5−i)3−i: (1+i)(3+i)(5−i)3−i=(3+i+3i+i2)(5−i)3−i= =15+20i+5i2−3i−3i2−i33−i=
т.к. i2=−1⇒i3=i2⋅i=−i =7+23i3−i=21−233+1+69+73+1i= =−12+19i
Найти решения уравнения (3+2i)x+(−2+4i)y=−8+16i: (3+2i)x+(−2+4i)y=−8+16i⇒ 3x+2xi−2y+4yi=−8+16i⇒ (3x−2y)+(2x+4y)i=−8+16i⇒
Приравняем вещественную и мнимую часть в левой и правой частях уравнения и составим систему уравнений: