ABCD — випуклий чотирикутник, діагоналі котрого перетинаються в точці O. Нехай P та Q — центри кіл, описаних навколо трикутників ABO і CDO.
Доведіть, що AB+CD≤4PQ
Ф. Назаров
Розв’язання
Нехай O — точка перетину діагоналей чоторикутника ABCD. Проведемо пряму, що ділить кути BOA та COD навпіл і, що перетинає кола, описані навколо трикутників AOB і COD у точках K і L відповідно. (малюнок)
Нехай PM та QN — перпендикуляри, опущені із точок P і Q на пряму KL.
Так як сума кутів ∠KBO і ∠KAO = 180∘, один з цих двох кутів не є гострим. Будемо для визначенності вважати, що таким кутом є KBO.
З трикутника KBO отримаємо, що КО>KB. А так як трикутник AKB — рівнобедрений, 2KB=KB+KA>AB.
Бісектриси вписаного чотирикутника утворюють у перетині опуклий чотирикутник. Доведіть, що діагоналі отриманого чотирикутника перпендикулярні.
С.Берлов
Розв’язок
Продовжимо протилежні сторони вихідного чотирикутника ABCD до перетину в точках P і Q (див. рисунок). Доведемо спочатку, що бісектриса PF кута P перпендикулярна бісектрисі QE кута Q.
Оскільки чотирикутник ABCD — вписаний, зовнішній кут DCQ дорівнює внутрішньому куту в протилежній вершині A. Так як пряма QE — бісектриса кута Q, то кути трикутника AQE відповідно дорівнюють кутам трикутника CQG. Отже, ∠CGQ=∠AEQ. Але кути CGQ і PGE рівні як вертикальні. Тому ∠PEG=∠PGE і △PEG — рівнобедрений.
Отже, бісектриса кута P є серединним перпендикуляром до відрізка EG, тобто бісектриса PF кута P перпендикулярна бісектрисі QE кута Q.
Звідси легко випливає твердження задачі, оскільки діагоналі чотирикутника, утвореного на бісектрисах чотирикутника ABCD, лежать на бісектрисах PF і QE.
У випадку, коли будь-які дві протилежні сторони чотирикутника ABCD паралельні, твердження задачі випливає із симетричності креслення.
Докажите, что если диагонали вписанного четырехугольника перпендикулярны, то середины его сторон и основания перпендикуляров, опущенный из точки пересечения его диагоналей на стороны, лежат на одной окружности.
Решение
Прежде всего заметим, что если ABCD — вписанный четырехугольник с перпендикулярными диагоналями (рис. 1), то подобные треугольники AKB и CKD (K — точка пересечения диагоналей) расположены таким образом, что продолжение высоты, опущенной на гипотенузу одного из них, является медианой другого. (Этот факт, немедленно вытекающий из равенства отмеченных на рисунке 1 углов, по существу уже использовался в решении задач M546 и M592 — см. «Квант», 1980, № 1, 8.)
Рисунок 1
Далее: середины L, P, M, Q сторон четырехугольника ABCD, являясь вершинами прямоугольника (рис. 2), лежат на одной окружности. Покажем, что центр O этой окружности делит пополам отрезок OK (O — центр окружности, в которую вписан наш четырехугольник).
Рисунок 2
Для этого достаточно, например, показать, что четырехугольник LKMO — параллелограмм. Поскольку LK — медиана треугольника AKB, ее продолжение является высотой треугольника CKD, то есть LK⊥DC. Но и OM⊥DC (диаметр, проходящий через середину хорды), поэтому отрезки LK и OM параллельны. Аналогично доказывается параллельность отрезков LO и KM.
Теперь для окончания решения задачи нам достаточно установить, например, что |O1M|=|O1H|, где H — основание перпендикуляра, опущенного из точки K на сторону CD. Но это следует из того, что O1 — середина гипотенузы LM прямоугольного треугольника LMH (рис. 3).
Рисунок 3
Итак, все восемь точек, упомянутых в условиях задачи, лежат на одной окружности. Интересно, что радиус этой «окружности восьми точек» целиком определяется радиусом R данной окружности и величиной |OK|=a. В самом деле, искомый радиус равен половине длины |LM|, а |LM|2=|LP|2+|PM|2=
=14(|AC|2+|BD|2)=
=14(|AK|+|KC|)2+(|BK|+|KD|)2)=
=14(|AB|2+|CD|2+2(|AK|⋅|KC|+|BK|⋅|KD|))=
=14(|AB|2+|CD|2+4(R2—a2))=
=14(4R2+4(R2—a2))=2R2—a2.
(В этой вкладке мы вначале воспользовались тем, что произведение длин отрезков хорд, пересекающихся в одной и той же точке, постоянно: |AK|⋅|KC|=|BK|⋅|KD|=(R—a)(R+a)
(рис. 4), Рисунок 4
а затем, сообразив, что 90∘=^BCA+^DBC=⌣AB+⌣CD2
и дополнив ⌣CD до полуокружности дугой конгруэнтной ⌣AB получили равенство |AB|2+|CD|2=(2R)2=4R2
см. рисунок 5)
Рисунок 5
Наметим другое решение. Сделаем гомотетию наших восьми точек с центром в точке K и коэффициентом 2. Тогда утверждение задачи М648 превращается в такую теорему:
Пусть два взаимно перпендикулярных луча с накалом в точке K внутри данной окружности, вращаясь вокруг K, пересекают окружность в переменных точках P и Q. Тогда четвертая вершина T прямоугольника PKQT (точка симметричная точке K относительно середины |PQ|), а также точка S, симметричная точке K относительно прямой PQ, двигаются по окружности концентричной с данной (рис. 6).
Второй факт (про S) следует из первого, так как S симметрична точке T относительно серединного перпендикуляра к |PQ|, а первый (про T) установлен в решении задачи М539 («Квант», 1979, № 11)
Рисунок 6
Эта «теорема о восьми точках» допускает следующее стереометрическое обобщение:
Если три взаимно перпендикулярных луча с началом в фиксированной точке K внутри данной сферы, вращаясь вокруг K, пересекают сферу в переменных точках A, B и C, то точка пересечения медиан треугольника ABC и основание перпендикуляра, опущенного из K на плоскость ABC, двигаются по сфере, центр которой находится в точке O1 отрезка OK (O — центр данной сферы) такой, что |O1K|=13|OK|, а радиус равен 13√3R2—2a2, где a=|OK|,R — радиус данной сферы.
Доказать это можно, например, следующим образом.
Пусть D — вершина параллелепипеда, определенного отрезками KA, KB и KC, диагонально противоположная к K. Все точки D лежат на сфере с центром в той же точке O, что у исходной сферы, и радиусом √3R2—2a2 (см. решение задачи М639 — «Квант», 1969, № 11). При гомотетии с центром K и коэффициентом 13 точка D будет все время переходить в точку пересечения медиан треугольника ABC (докажите!), а точка O перейдет в точку O1. Таким образом, точка пересечения медиан треугольника ABC все время лежит на указанной сфере.
Осталось показать, что проекция точки K на плоскость треугольника ABC также все время лежит на этой сфере. Поскольку отрезки KA, KB и KC взаимно перпендикулярны, проекция точки K совпадет с точкой H пересечения высот треугольника ABC. Утверждение будет доказано, если мы, например, получим равенство |O1H|=|O1M|, где M — точка пересечения медиан треугольника ABC. Для этого заметим, что центр сферы O проектируется в центр Q описанной вокруг треугольника ABC окружности, и воспользуемся таким известным фактом: точки Q, M и H лежат на одной прямой (прямой Эйлера), точка M — между точками Q и H, причем 2|QM|=|MH|. (Если этот факт вам неизвестен, докажите его.) Остальное легко следует из рисунка 7: поскольку |O1K|=13|OK|, а |QM|=13|QH|, точка O1 проектируется в середину отрезка MH, то есть O1 равноудалена от M и H.
Во вписанном четырёхугольнике одна диагональ делит вторую пополам. Докажите, что квадрат длины первой диагонали равен половине суммы квадратов длин всех сторон четырёхугольника.
Решение:
Пусть a,b,c,d — длины сторон четырёхугольника ABCD, |BO|=|OD|,|AC|=l (см. рисунок). По теореме косинусов
l2=a2+b2—2ab⋅cosˆB
l2=c2+d2+2cd⋅cosˆB
(ˆD=180∘—ˆB, поскольку четырёхугольник ABCD вписан в окружность).
Легко заметить, что треугольники ABC и ADC равновелики: SABC=SADC — они имеют общее основание AC и равные по длине высоты, опущеные на это основание. Поэтому 12ab⋅sinˆB=12cd⋅sin(180∘—ˆB), то есть ab=cd. Складывая (1) и (2), получаем требуемое.