М1314. Про діагоналі випуклого чотирикутника та центри вписаних кіл трикутників

Задача М1314 з журналу «Квант» 1991 року №11

Умова

\(ABCD\) — випуклий чотирикутник, діагоналі котрого перетинаються в точці \(O\). Нехай \(P\) та \(Q\) — центри кіл, описаних навколо трикутників \(ABO\) і \(CDO\).

Доведіть, що \(AB+CD\leq4PQ\)

Ф. Назаров

Розв’язання

Нехай \(O\) — точка перетину діагоналей чоторикутника \(ABCD\). Проведемо пряму, що ділить кути \(BOA\) та \(COD\) навпіл і, що перетинає кола, описані навколо трикутників \(AOB\) і \(COD\) у точках \(K\) і \(L\) відповідно. (малюнок)

Нехай \(PM\) та \(QN\) — перпендикуляри, опущені із точок \(P\) і \(Q\) на пряму \(KL\).

Так як сума кутів \(\angle KBO\) і \(\angle KAO\) = \(180^{\circ}\), один з цих двох кутів не є гострим. Будемо для визначенності вважати, що таким кутом є \(KBO\).

З трикутника \(KBO\) отримаємо, що \(КО > KB\). А так як трикутник \(AKB\) — рівнобедрений, $$2KB = KB + KA > AB.$$

Отже, \(2KO > AB\). Аналогічно доводиться, що \(2LO > CD\).

Але тоді $$4PQ \geq 4MN = 2KL = 2KO + 2LO > AB + CD.$$

Ф. Назаров

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *