М1345. Задача об окружности пересекающей гиперболу и правильном треугольнике

Задача из журнала «Квант» (1992 год, 5 выпуск)

Условие

На гиперболе $y =\displaystyle \frac{1}{x}$ взяты две точки $M(x_0;y_0)$ и $N(-x_0;-y_0)$, симметричные относительно начала координат. Окружность с центром $M$, проходящая через точку $N$, пересекает гиперболу ещё в трех точках. Докажите, что эти точки лежат в вершинах правильного треугольника.

Решение

Для решения данной задачи вам потребуется следующая

Лемма. Пусть точки $A, B, C$ лежат на окружности с центром $M$. Тогда треугольник $ABC$ является правильным тогда и только тогда, когда $\overrightarrow{\mkern -3mu OA\mkern 3mu}+\overrightarrow{\mkern -3mu OB\mkern 3mu}+\overrightarrow{\mkern -3mu OC\mkern 3mu}=3 \mkern 3mu \overrightarrow{\mkern -3mu OM\mkern 3mu}.$

Из данного равенства сразу следует, что $\overrightarrow{\mkern -3mu MA\mkern 3mu}+\overrightarrow{\mkern -3mu MB\mkern 3mu}+\overrightarrow{\mkern -3mu MC\mkern 3mu}=\overrightarrow{0}$, но это означает, что точка $M$ совпадает с центром тяжести треугольника $ABC$, т.е. с точкой пересечения его медиан (убедитесь в этом). Таким образом, длины всех всех медиан треугольника $ABC$ равны. Отсюда следует что треугольник правильный. (Обратное утверждение очевидно.)

Теперь приступим к решению задачи. Пусть координаты точек $A, B, C$ и $M$ равны соответственно $(x_A;y_A), (x_B;y_B), (x_C;y_C)$ и $(x_M;y_M)$. По условию,$$  \begin{cases}xy=1,\\(x-x_0)^{2}+(y-y_0)^{2}=4({x_0}^2+{y_0}^2).\end{cases}  $$Подставив $y=\displaystyle \frac{1}{x}$ из первого уравнения системы во второе, после несложных преобразований получаем уравнение для $x$:$$x^{4}-2{x_0}^3+\dots=0$$

Мы выписали только два старших члена, поскольку остальные слагаемые нас не интересуют. По теореме Виета сумма всех корней этого уравнения, включая корень $(-x_0)$, равна $2x_0$. Поэтому $x_{A}+x_{B}+x_{C}=3x_0$. Аналогично $y_{A}+y_{B}+y_{C}=3y_0$.

Последние равенства означают, что $$\overrightarrow{\mkern -3mu OA\mkern 3mu}+\overrightarrow{\mkern -3mu OB\mkern 3mu}+\overrightarrow{\mkern -3mu OC\mkern 3mu}=3 \mkern 3mu \overrightarrow{\mkern -3mu OM\mkern 3mu},$$ где $O$ начало координат. Осталось воспользоваться доказанной нами леммой.

В.Сендеров

М1322. О правильном треугольнике

Задача из журнала «Квант» (1992 год, 7 выпуск)

Условие

Три отрезка, выходящие из разных вершин треугольника $ABC$ и пересекающиеся в одной точке $M$, делят его на шесть треугольников. В каждый из них вписана окружность. Оказалось, что четыре из этих окружностей равны. Следует ли отсюда, что треугольник $ABC$ — правильный, если $M$ — точка пересечения а)медиан, б)высот, в)биссектрис, г)$M$ — произвольная точка внутри треугольника?

Решение

Ответ: а), б), в) да; г) нет.

Назовем треугольники, в которые вписаны окружности равных радиусов, отмеченными. Заметим, что какие-то два из отмеченных треугольников примыкают к одной из сторон треугольника $ABC$. Пусть, для определенности, это будут треугольники $BMD$ и $DMC$.

  1. Рис. 1

    Поскольку равны площади и радиусы вписанных окружностей отмеченных треугольников, равны и их периметры. Поэтому (рис.$1$) $BM = MC$, и, следовательно, $AB = AC$. Пусть $AD = m$, $BE = CF = n$, $AB = AC = l$, $BC = a$, а треугольник $BMF$ — отмеченный. Тогда из равенства периметров треугольника $BMF$ и $BMD$ получаем $$\frac{1}{2}+\frac{n}{3}+\frac{2n}{3}=\frac{a}{2}+\frac{2n}{3}+\frac{m}{3},$$
    т. е. $$\frac{1}{2}+\frac{n}{3}=\frac{a}{2}+\frac{m}{3}. \tag{*}$$
    Пусть $X$ и $Y$ — точки касания вписанных окружностей (см. рис.$1$) со сторонами $BD$ и $BF$, $DX = x$, $FY = y$. Из свойств отрезков касательной следует, что $$BM = \frac{1}{2}-y+\frac{n}{3}-y=\frac{a}{2}-x+\frac{m}{3}-x,$$ и с учетом $\left(*\right)$ получаем $$x=y.$$ Поскольку $\angle ADB$ — прямой, $\angle CFB$ — тоже прямой, т. е. медиана $CF$ является высотой, и треугольник $ABC$ — правильный.

    Если отмечен треугольник $AME$, то, как и раньше, получаем из равенства периметров $$\frac{l}{2}+\frac{2m}{3}+\frac{n}{3}=\frac{a}{2}+\frac{2n}{3}+\frac{m}{3},$$ т. е. $$\frac{l-a}{2}=\frac{n-m}{3}.\tag{**}$$

    Однако во всяком треугольнике большей стороне соответствует меньшая медиана. Поэтому, если $l>a$, то $n<m$, наоборот, при $l<a$ будет $n>m$, так что равенство (**) возможно лишь при $a=l$. Итак, и в этом случае утверждение доказано.

    Остальные ситуации совпадают с разобранными с точностью до обозначений.

  2. Рис. 2

    И в этом случае треугольники $BMD$ и $CMD$ равны (рис.$2$), поскольку $\angle BMD = \angle CMD$ (эти углы равны, так как окружности одинаковых радиусов касаются отрезка $MD$ в одной точке). Значит, $BD=DC$, $AB=AC$, $MF=ME$, $BF=EC$, так что равны треугольники $MBF$ и $MEC$. Если они отмеченные, то равны и треугольники $MBF$ и $MBD$ (у них общая гипотенуза $BM$ и равные радиусы вписанных окружностей, при этом $\angle FBM=\angle MBD$ — в противном случае, фигура $MFBD$ окажется прямоугольником).

    Если отмечены равные треугольники $AMF$ и $AME$, то равны и треугольники $AME$ и $BMD$ (они подобны и имеют одинаковые радиусы вписанных окружностей). Но тогда $AD=BE$, что и завершает доказательство.

  3. Рис. 3

    Мы можем считать отмеченными треугольники $AMF$ и $AME$ (рис.$3$). Но тогда окружности, вписанные в эти треугольники, касаются отрезка $AM$ в общей точке. Отсюда следует, что $\angle AME=\angle AMF$ и $\angle ABE = \angle ACF$, т. е. $\angle B=\angle C$ и $AB=AC$. Если отмечен треугольник $BMF$, то, пользуясь формулой для площади $S=rp$ применительно к треугольникам $AMF$ и $FMB$, получаем $$\frac{AM+MF+AF}{AF}=\frac{MF+BF+BM}{BF}.\tag{***}$$ Применяя к этим треугольникам теорему синусов, перепишем (***) так:$$\frac{\sin\alpha +\sin(2\alpha +\beta )}{\cos\beta }= \frac{\sin\beta +\sin(2\alpha +\beta )}{\cos2\beta },$$ откуда получаем после преобразований (пользуясь тем, что $\alpha +2\beta =\frac{\pi}{2}$), что $$\sin3\beta =1, т. е. \beta =\frac{\pi}{6},$$ т. е. $ABC$ — правильный треугольник.

    Если отмечены треугольники $BMD$ и $CMD$, то , так как точка $M$ — центр вписанной в треугольник $ABC$ окружности, получаем $$\frac{S_{AME}}{AE}=\frac{S_{CMD}}{CD},$$ что дает (формула $S=rp$) $$\frac{AE+EM+MA}{AE}=\frac{CM+MD+DC}{CD},$$ после чего, рассуждая как и раньше, приходим к равенству $$\cos2\beta +\sin3\beta =1+\sin\beta ,$$ из которого находим без труда $\beta =\frac{\pi}{6}$. И в этом случае $ABC$ — правильный треугольник.

  4. Рис. 4

    Треугольник $ABC$ может и не быть равносторонним. Для его построения (рис.$4$) проведем прямую, перпендикулярную $AF$, и выберем на ней точку $M$ так, что $\frac{\pi }{2}>\angle MAF>\frac{\pi }{3}$. В построенные на рисунке 4 углы впишем равные окружности с центрами $O_{1}$ и $O_{2}$, затем из точки $A$ проведем касательную к окружности $O_{2}$. Эта касательная пересечет прямую $MF$, в некоторой точке $C$. Симметрично отразив картинку относительно прямой $MF$, получим неправильный равнобедренный треугольник $ABC$ $\left(AC=BC\right)$, удовлетворяющий условию задачи.

В. Сендеров

M1804. Об иррациональных неравенствах

Задача из журнала «Квант» (2002 год, 1 выпуск)

Условие

Докажите, что $\frac{\displaystyle a}{\displaystyle\sqrt{a^2+8bc}} + \frac{\displaystyle b}{\displaystyle\sqrt{b^2+8ca}} + \frac{\displaystyle c}{\displaystyle\sqrt{c^2+8ab}} \geqslant 1$ для любых положительных чисел $a$, $b$ и $c.$

Доказательство

Так как выражение в левой части однородно относительно $a,\ b$ и $c$ (т.е. $f(a, b, c)$=$f(\lambda a, \lambda b, \lambda c)$), то мы можем считать, что $abc = 1.$ Из равенства $abc = 1$ следует, что $\displaystyle\frac{a}{\sqrt{a^2+8bc}} = \displaystyle\frac{1}{\sqrt{1+\displaystyle\frac{8abc}{a^3}}} = \displaystyle\frac{1}{\sqrt{1+\displaystyle\frac{8}{a^3}}}\ .$ Пусть $1+\displaystyle\frac8{a^3}=x\ , \ 1+\displaystyle\frac8{b^3}=y\ , \ 1+\displaystyle\frac8{c^3}=z\ ,$ тогда нужно доказать неравенство \begin{multline}\displaystyle\frac1{\sqrt{\mathstrut x}} + \displaystyle\frac1{\sqrt{\mathstrut y}} + \displaystyle\frac1{\sqrt{\mathstrut z}} \geqslant 1 \ \Leftrightarrow \ \sqrt{\mathstrut xy} + \sqrt{\mathstrut xz} + \sqrt{\mathstrut yz} \geqslant \sqrt{\mathstrut xyz}\ \Leftrightarrow \\ \Leftrightarrow \ xy + xz + yz + 2\sqrt{x^2yz} + 2\sqrt{xy^2z} + 2\sqrt{xyz^2} \geqslant xyz \ \Leftrightarrow \\ \Leftrightarrow xy + xz + yz + 2\sqrt{\mathstrut xyz} \left(\sqrt{\mathstrut x} + \sqrt{\mathstrut y} + \sqrt{\mathstrut z} \right) \geqslant xyz\ .\end{multline} Теперь, применив неравенство о среднем арифметическом и среднем геометрическом, находим $x = 1 + \underbrace{\displaystyle\frac1{a^3} + … + \displaystyle\frac1{a^3}}_{8\ раз} \geqslant 9\sqrt[9]{1\cdot\left(\displaystyle\frac1{a^3}\right)^8} = \displaystyle\frac9{a^{\frac83}}\ ,$ поэтому $\sqrt{\mathstrut x} \geqslant \displaystyle\frac3{a^{\frac43}}\ .$ Аналогично, $\sqrt{\mathstrut y} \geqslant \displaystyle\frac3{b^{\frac43}}\ , \ \sqrt{\mathstrut z} \geqslant \displaystyle\frac3{c^{\frac43}}\ ,$ следовательно, $\sqrt{\mathstrut xyz} \geqslant \displaystyle\frac{27}{\left(abc\right)^{\frac43}} = 27$ и $\sqrt{\mathstrut x} + \sqrt{\mathstrut y} + \sqrt{\mathstrut z} \geqslant 3\sqrt[3]{\sqrt{\mathstrut xyz}} \geqslant 3\sqrt[3]{\mathstrut 27} = 9\ .$ Поэтому для доказательства неравенства $(1)$ достаточно показать, что \begin{equation}xy + xz + yz + 2 \cdot 27 \cdot 9 \geqslant xyz\ .\end{equation} Положим $\displaystyle\frac8{a^3} = A\ ,\ \displaystyle\frac8{b^3} = B\ ,\ \displaystyle\frac8{c^3} = C\ ,$ тогда $(2)$ примет вид $\left(1+A\right)\left(1+B\right) + \left(1+A\right)\left(1+C\right) + \left(1+B\right)\left(1+C\right) + 486 \geqslant \\ \geqslant \left(1+A\right)\left(1+B\right)\left(1+C\right)\ \Leftrightarrow A+B+C+488 \geqslant ABC\ .$
Но $A \cdot B \cdot C = \displaystyle\frac{8^3}{(abc)^3} = 8^3\ ,$ отсюда $A+B+C \geqslant 3\sqrt[3]{\mathstrut ABC} = 24\ ,$ и, значит, $A+B+C+488 \geqslant 512 = 8^3 = A \cdot B \cdot C\ .$ Утверждение доказано.

(Южная Корея)

M1247. О покрытии плоскости квадратами

Задача из журнала «Квант» (1991 год, 3 выпуск)

Условие

Можно ли покрыть всю плоскость квадратами с длинами сторон $1, 2, 4, 8, 16, …$ (без наложения), используя каждый квадрат не более а) десяти раз; б) одного раза?

Доказательство

  1. Можно. Пример покрытия (где квадрат со стороной $1$ используется $4$ раза, а остальные — по $3$ раза) приведен на рисунке $1$.
    Рис. 1
  2. Нельзя. Предположим, что существует покрытие, в котором все квадраты различны. Поскольку сумма всех чисел не превосходящих $2^{n-1}$, меньше $2^n$ $(1+2+2^2+ … +2^{n-1} = 2^n-1)$, то к каждой стороне любого из квадратов нашего покрытия должна примыкать сторона большего квадрата. Отсюда следует, что каждая вершина квадрата должна лежать на стороне большего квадрата (если вершина $B$ квадрата $ABCD$ лежит на стороне большего квадрата, примыкающего к стороне $AB$ (рис. $2$), то вершина $C$ будет лежать на стороне большего квадрата, примыкающего к $BC$, и т.д.).
Рис. 2

Рассмотрим теперь наименьший из всех квадратов покрытия. Четыре квадрата будут примыкать к нему так, как показано на рисунке $3$.

Рис. 3

Рассмотрим больший из этих квадратов — пусть он примыкает к стороне $AB$ наименьшего (на рисунке — это черный квадрат). Тогда вершина $A$ этого квадрата не лежит на стороне большего, чем он, квадрата. Получили противоречие.

Д.Фомин

М1758. Рейтинговые переходы

Задача из журнала «Квант» (2001 год, 4 выпуск)

Условие

Всякий депутат имеет свой (абсолютный) рейтинг. В начальный момент после избрания каждый депутат вошел в одну из фракций, в которой он может подсчитать свой относительный рейтинг. Возможен переход депутата из одной фракции в другую, если его относительный рейтинг при этом увеличивается. Пусть в каждый момент времени может происходить лишь один такой переход. Докажите, что спустя конечное время все рейтинговые переходы прекратятся.

Доказательство

Всякий $i$-й депутат имеет свой абсолютный рейтинг $R_{i}$. В начальный момент (после избрания) каждый $i$-й депутат вошел в одну из фракций, в которой он может подсчитать свой относительный рейтинг: $r_{i} = \frac{R_{i}}{S}$, где $S$ – сумма всех абсолютных рейтингов данной фракции.

Обозначим через $S_{i}\left(t\right)$, $S_{j}\left(t\right)$ суммы всех абсолютных рейтингов депутатов $i$ и $j$ фракций в момент $t$. Согласно условию переход $k$-го депутата (в момент $t$) из $i$-й фракции в $j$-ю реализуется, если и только если выполняется неравенство $\frac{R_{k}}{S_{i}\left(t\right)} < \frac{R_{k}}{S_{j}\left(t\right) + R_{k}}$ т.е $S_{i}\left(t\right) > S_{j}\left(t\right) + R_{k}$, или $$R_{k} + S_{j}\left(t\right) — S_{i}\left(t\right) < 0 \tag{*}$$Отметим, что здесь получаем $S_{i}\left(t+1\right) = S_i\left(t\right) — R_{k}$ и $S_{j}\left(t+1\right) = S_j\left(t\right) + R_{k}$.

Теперь рассмотрим функцию $L\left(t\right) = \sum S^{2}_{m}\left(t\right)$, где индекс $m$ пробегает все номера фракций. Покажем, что при реализации перехода $L\left(t\right)$ убывает. Действительно, пусть в момент $t$ происходит переход $k$-го депутата из фракции $i$-й во фракцию $j$-ю. Тогда получаем $$L\left(t+1\right) = \left(S_{i}\left(t\right) — R_{k}\right)^{2} + \left(S_{j}\left(t\right) + R_{k}\right)^{2} + \sum S^{2}_{n}\left(t+1\right)$$где $n$ отлично от $i$ и $j$. Раскрывая первые два квадрата и находим $$L\left(t+1\right) = S^{2}_{i}\left(t\right) + S^{2}_{j}\left(t\right) + 2R_{k}\left(R_k + S_{j}\left(t\right) — S_{i}\left(t\right)\right) + \sum S^{2}_{n}\left(t+1\right)$$С учетом неравенства $\left(*\right)$ устанавливаем $L\left(t+1\right) < L\left(t\right)$. Но функция $L$ может принимать лишь конечное число значений, поэтому ее убывание не может продолжаться сколь угодно долго.

В.Ильичев