М1651. О наименьшей и наибольшей площади выпуклой фигуры

Задача из журнала «Квант» (1998 год, 5 выпуск)

Условие

Найдите а) наименьшую, б) наибольшую возможную площадь выпуклой фигуры, все проекции которой на оси $Oх$, $Oу$ и прямую $х = у$ суть отрезки единичной длины.

Ответ: а) $\sqrt{2}-1$; б)$\frac{2\sqrt{2}-1}{2}$.

Решение

Для обоих случаев а) и б) фигура $F$, о которой идет речь в задаче, заключается внутри шестиугольника, являющегося пересечением трех полос (шириной $1$ каждая) (рис.$1$).

Рис. 1
Рис. 1

Назовем такой шестиугольник накрывающим. В случае б) фигура $F$ совпадает с накрывающим шестиугольником, достигая наибольшей площади тогда, когда накрывающий шестиугольник симметричен относительно обеих диагоналей квадрата. Эта наибольшая площадь равна $\frac{2\sqrt{2}-1}{2}$, как показывают элементарные вычисления.

Рис. 2
Рис. 2

Минимальная площадь фигуры $F$ (случай а) реализуется на многоугольнике, который на каждой стороне накрывающего шестиугольника имеет по крайней мере одну вершину. Таким многоугольником будет четырехугольник $ABCD$ (рис.$2$), который во всех разновидностях накрывающих шестиугольников имеет одну и ту же площадь $\sqrt{2}-1$.

В.Тиморин

M1686. О равенстве непрерывных на отрезке функций

Задача из журнала «Квант» (1999 год, 3 выпуск)

Условие

Функции $f(x)$ и $g(x)$ непрерывны на отрезке $\left[0; 1\right]$ и удовлетворяют равенствам
$$\int\limits_{0}^{1} f(x) dx = \int\limits_{0}^{1} g(x) dx = 1$$ и $$\int\limits_{0}^{1} \sqrt{f^2(x)+g^2(x)} dx = \sqrt{2} .$$
Докажите, что $f(x) = g(x)$ на отрезке $\left[0; 1\right]$.

Для любой пары неотрицательных чисел $а$ и $b$ справедливо элементарное неравенство $a + b \leqslant \sqrt{2(a^2 + b^2)}$. При этом неравенство обращается в равенство лишь тогда, когда $a = b$. Ввиду этого и условий задачи, можно записать цепочку неравенств $$ 2 \leqslant \int\limits_{0}^{1} (|f(x)| + |g(x)|) dx \leqslant \sqrt{2} \int\limits_{0}^{1} \sqrt{f^2(x)+g^2(x)} dx = 2 .$$

Отсюда следует, что функции $f(x)$ и $g(x)$ равны и неотрицательны на отрезке $\left[0; 1\right]$.

Подобным образом читатель может доказать аналогичное утверждение для трех (и более) функций: если $f(x)$, $g(x)$ и $\varphi(x)$ непрерывны на отрезке $\left[0; 1\right]$ и $$\int\limits_{0}^{1} f(x) dx = \int\limits_{0}^{1} g(x) dx = \int\limits_{0}^{1} \varphi(x) = 1 ,$$ а
$$\int\limits_{0}^{1} \sqrt{f^2(x)+g^2(x)+\varphi^2(x)} dx = \sqrt{3}, $$ то $f(x) = g(x) = \varphi(x)$ на $\left[0; 1\right]$.

В.Произволов

Ф1316. О нагреве полупроводникового терморезистора

Задача из журнала «Квант» (1991 год, 10 выпуск)

Условие

Полупроводниковый терморезистор имеет зависимость сопротивления от температуры вида $R = R_{0}(1-\alpha t).$ Когда терморезистор нагрет до температуры $t,$ он рассеивает в окружающую среду мощность $P = B(t-t_{окр}).$ Какой ток будет течь в цепи, если к терморезистору подключить источник с напряжением $U$?

Решение

Пусть при напряжении $U$ ток через терморезистор составит $I$. Тогда запишем $$R = \dfrac{U}{I} = R_{0}(1-\alpha t)$$ $$P = UI = B(t-t_{окр}).$$ Для того чтобы найти связь между током и напряжением, нужно исключить из этих уравнений температуру $t$: $$t = t_{окр} + \dfrac{UI}{B},$$ $$\dfrac{U}{I} = R_{0}\left(1-\alpha t_{окр}-\alpha\dfrac{UI}{B}\right),$$ $$U = \dfrac{R_{0}(1-\alpha t_{окр})}{\dfrac{\alpha R_{0}I}{B} + \dfrac{1}{I}}.$$ При малых токах, когда мощность мала и температура терморезистора почти не отличается от окружающей, он ведет себя как обычный резистор с сопротивлением $R = R_{0}(1-\alpha t_{окр}).$ С увеличением тока температура резистора увеличивается и при больших токах приближается к критическому значению$$t_{кр} = \dfrac{1}{\alpha}.$$ Но вопрос в задаче поставлен несколько иначе: каким будет ток при подаче напряжения $U$? Сложность в том, что одному значению $U$ соответствуют два (либо — при больших напряжениях — ни одного) значения тока. Легко найти граничное напряжение $U_{гр}$, выше которого решения нет, — оно соответствует минимальному значению знаменателю при токе $I = I_{кр}$:$$U_{гр} = U(I_{кр}) = U\left(\sqrt{\dfrac{\alpha R_{0}}{B}}\right) = \dfrac{R_{0}(1-\alpha t_{окр})}{\sqrt{\dfrac{B}{(\alpha R_{0})}}\left(1 + \left(\dfrac{\alpha R_{0}}{B}\right)^2\right)}.$$ Выше этого напряжения решений нет. Но все же — какой ток потечет по цепи, если подключить к ней напряжение большее, чем $U_{гр}?$ Какой-нибудь наверняка потечет, только мы его не сможем подсчитать, исходя из условий задачи — они становятся противоречивыми. Ясно, что «настоящий» терморезистор имеет другую — более сложную — зависимость сопротивления от температуры (она не дает отрицательных значений сопротивления при $t > t_{кр} = \dfrac{1}{\alpha}$), и там подобной проблемы не будет.
Теперь о той области напряжений, для которой возможны два значения тока. Если медленно повышать напряжение, то и ток будет повышаться, т. е. реализуется меньшее из двух значений тока. Но возможно равновесие и при втором — большем значении, если резистор заранее «подогреть». Подумайте сами, будет ли такое равновесие устойчивым.

А. Зильбеман