Processing math: 100%

Частные производные высших порядков

Частные производные высших порядков определяются при помощи индукции. Если говорить неформально, то каждая частная производная порядка больше чем 1 определяется, как производная от производной предыдущего порядка.
 

Определение

Частная производная (по независимым переменным) от частной производной порядка m1 называется частной производной порядка m(m=1,2,).
Частная производная, полученная  с помощью дифференцирования по разным переменным, называется смешанной частной производной.
Частные производные высших порядков сохраняют все те же свойства, что и обычные частные производные.

Пример

Пусть дана функция f(x,y,z).
Частной производной первого порядка по x будет dfdx.
Частной производной второго порядка по x будет d2fdx2
Смешанной производной третьего порядка будет d3fdx2dy

Геометрический смысл частной производной

Спойлер

Использованная литература

Частные производные высших порядков

Тест на понимание темы «Частные производные высших порядков»

Таблица лучших: Частные производные высших порядков

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

M1568. Сечение пирамиды

Задача из журнала «Квант» (1996, №5, M1568)

Условие

Докажите что при [latex]n\ge 5[/latex] сечение пирамиды, в основании которой лежит правильный n-угольник, не может являться правильным (n+1)-угольником.

Решение

Пусть правильный (n+1) –угольник [latex]{ B }_{ 1 }…{ B }_{ n }[/latex] является сечением пирамиды [latex]S{ A }_{ 1 }…{ A }_{ n }[/latex] где [latex]{ A }_{ 1 }…{ A }_{ n }[/latex] – правильный n-угольник. Мы рассмотрим три случая: [latex]n=5 , n=2k-1 (k>3)[/latex]  и [latex]n=2k (k>2)[/latex]
Так как n-угольная пирамида имеет [latex](n+1)[/latex] грань, то стороны сечения находятся по одной в каждой грани пирамиды. Поэтому без ограничения общности рассуждений можно считать, что точки [latex]{ B }_{ 1 }…{ B }_{ n+1 }[/latex] расположены на ребрах пирамиды так, как показано на рисунках 1 и 2 ( в соответствии с указанными случаями).

  1. [latex] n=5 [/latex]. Так как в правильном шестиугольнике [latex]{ B }_{ 1 }…{ B }_{ 6 }[/latex] прямые [latex]{ B }_{ 2 }{ B }_{ 3 }, { B }_{ 5 }{ B }_{ 6 }[/latex] и [latex]{ B }_{ 1 }{ B }_{ 4 }[/latex] параллельны, а плоскости  [latex]{ A }_{ 2 }S{ A }_{ 3 }[/latex] и [latex]ASA [/latex] проходят через [latex]{ B }_{ 2 }{ B }_{ 3 }[/latex] и [latex]{ B }_{ 5 }{ B }_{ 6 }[/latex]  то их линия пересечения [latex]{ ST ( T= { A }_{ 1 }{ A }_{ 5 } }\bigcap { A } _{ 2 }{ A }_{ 3 } )[/latex] параллельна этим прямым т.е. [latex]ST\parallel { B }_{ 1 }{ B }_{ 4 }[/latex] Проведем через прямые [latex]ST[/latex]  и [latex]{ B }_{ 1 }{ B }_{ 4 }[/latex] плоскость. Эта плоскость пересечет плоскость основания пирамиды по прямой [latex]{ B }_{ 1 }{ A }_{ 4 }[/latex] которая должна проходить через точку пересечения прямой [latex]ST[/latex] с плоскостью основания т.е. через точку [latex]T[/latex]. Итак, прямые [latex]{ A }_{ 1 }{ A }_{ 5 }, { A }_{ 4 }{ B }_{ 1 }[/latex] и [latex]{ A }_{ 2 }{ A }_{ 3 }[/latex] пересекаются в одной точке.Аналогично доказывается, что прямые [latex]{ A }_{ 1 }{ A }_{ 2 }, { A }_{ 3 }{ B }_{ 6 }[/latex] и [latex]{ A }_{ 4 }{ A }_{ 5 }[/latex]  и пересекаются в одной точке. Из этого следует что [latex]{ A }_{ 4 }{ B }_{ 1 }[/latex] и [latex]{ A }_{ 3 }{ B }_{ 6 }[/latex]  – оси симметрии правильного пятиугольника [latex]{ A }_{ 1 }…{ A }_{ 5 }[/latex] , значит. Точка O их пересечения – центр этого пятиугольника. Заметим теперь, что если [latex]Q[/latex] – центр правильного шестиугольника [latex]{ B }_{ 1 }…{ B }_{ 6 }[/latex] , то плоскости [latex] S{ A }_{ 3 }{ B }_{ 6 }, S{ A }_{ 4 }{ B }_{ 1 }[/latex] и [latex]S{ B }_{ 2 }{ B }_{ 5 }[/latex] пересекаются по прямой [latex]SQ[/latex]. Следовательно прямые  [latex]{ A }_{ 3 }{ B }_{ 6 },{ A }_{ 4 }{ B }_{ 1 }[/latex] и [latex]{ A }_{ 2 }{ A }_{ 5 }[/latex]  должны пересекаться в одной точке – точке пересечения прямой [latex]SQ[/latex] с плоскостью основания пирамиды.Значит диагональ правильного пятиугольника [latex]{ A }_{ 1 }…{ A }_{ 5 }[/latex] должна проходить через его центр [latex]O[/latex], что невозможно.
  2. 4

  3.  [latex] n=2k-1 (k>3) [/latex] Аналогично первому случаю показывается, что так как в правильном [latex]2k[/latex]-угольнике [latex] { B }_{ 1 }…{ B }_{ 2k }[/latex] прямые  [latex] { B }_{ 1 }{ B }_{ 2 },{ B }_{ k+1 }{ B }_{ k+2 }[/latex] и [latex]{ B }_{ k }{ B }_{ k+3 }[/latex]параллельны, то  прямые  [latex] { A }_{ 1 }{ A }_{ 2 },{ A }_{ k+1 }{ A }_{ k+2 }[/latex] и [latex]{ A }_{ k }{ A }_{ k+3 }[/latex] должны пересекаться в одной точке, что невозможно, так как в правильном [latex](2k-1)[/latex]-угольнике [latex]{ A }_{ 1 }…{ A }_{ 2k-1 }[/latex] имеем [latex]{ A }_{ k+1 }{ A }_{ k+2 }\parallel { A }_{ k }{ A }_{ k+3 }[/latex], а прямые [latex]{ A }_{ 1 }{ A }_{ 2 },{ A }_{ k+1 }{ A }_{ k+2 }[/latex] не параллельны.
  4.  [latex]n=2k (k>2) [/latex] Аналогично предыдущему случаю прямые [latex] { A }_{ 1 }{ A }_{ 2 },{ A }_{ k+1 }{ A }_{ k+2 }[/latex] и [latex]{ A }_{ k }{ A }_{ k+3 }[/latex]  параллельны, следовательно, прямые [latex] { B }_{ 1 }{ B }_{ 2 },{ B }_{ k+1 }{ B }_{ k+2 }[/latex] и [latex]{ B }_{ k }{ B }_{ k+3 }[/latex] должны пересекаться в одной точке, что невозможно, так как [latex]{ B }_{ k+1 }{ B }_{ k+2 }\parallel { B }_{ k }{ B }_{ k+3 }[/latex], а прямые [latex]{ A }_{ 1 }{ A }_{ 2 }, { A }_{ k+1 }{ A }_{ k+2 }[/latex]  не параллельны.

Замечания

  1.  При [latex]n=3,4[/latex] утверждение задачи неверно. Примерами могут служить правильный тетраэдр имеющий сечением квадрат и правильная четырехугольная  пирамида, все боковые грани которой являются правильными треугольниками, которая имеет сечением правильный пятиугольник
  2. Приведенное решение можно было бы изложить короче, если воспользоваться центральным проектированием и его свойством утверждающим, что при центральном проектировании образами прямых, проходящих через одну точку, являются прямые, проходящие через одну точку ( или параллельные). Достаточно спроектировать сечение пирамиды на плоскость из вершины пирамиды.

Д. Терешин.

Метод математической индукции

Под методом математической индукции понимают следующий способ доказательства: если требуется доказать истинность утверждения latexP(n),nN, то сначала проверяют данное утверждение для некоторого натурально числа latexn0, обычно latexn0=1, а потом допускают истинность выражения latexP(k). Далее доказывают истинность утверждения latexP(k+1).

Упражнение:

Доказательство одноцветности всех лошадей — ошибочное доказательство, что все лошади одного цвета, придуманное венгерским математиком Пойа. Доказательство призвано продемонстрировать ошибки, возникающие при неправильном использовании метода математической индукции.

Доказываемое утверждение: все лошади одного цвета.

Доказательство:

Проведем доказательство по индукции.

База индукции:

Одна лошадь, очевидно, одного (одинакового) цвета.
Шаг индукции:
Пусть доказано, что любые latexK лошадей всегда одного цвета. Рассмотрим latexK+1 каких-то лошадей. Уберем одну лошадь. Оставшиеся latexK лошадей одного цвета по предположению индукции. Возвратим убранную лошадь и уберем какую-то другую. Оставшиеся latexK лошадей снова будут одного цвета. Значит, все latexK+1 лошадей одного цвета.

Отсюда следует, что все лошади одного цвета. Утверждение доказано.

В чем ошибка?
Решение

Спойлер

Пример:

latex1) Доказать равенство: latex12+22+32++n2=n(n+1)(2n+1)6,nN.

latex◻ latex1)  latex12=1(1+1)(2+1)6=1.

latex2) Пусть данное утверждение верно для latexn=k:   latex12++k2=k(k+1)(2k+1)6.

latex3) Докажем истинность утверждения для latexn=k+1.

latexk(k+1)(2k+1)612+22++k2+(k+1)2=

latex(k+1)(k+2)(2(k+1)+1)6

latexk(k+1)(2k+1)6+(k+1)2=

latex(k+1)(k+2)(2k+3)6

latexk(k+1)(2k+1)+6(k+1)26=

latex(k+1)(k+2)(2k+3)6

latexk(2k2+k+2k+1)+6(k2+2k+1)=

latex(k+1)(2k2+3k+4k+6)

 latex2k3+3k2+k+6k2+12k+6=

latex2k3+7k2+6k+2k2+7k+6

latex2k3+9k2+13k+6=

latex2k3+9k2+13k+6.   latex◼

latex2) Доказать, что для всех натуральных чисел latexn справедливо неравенство latexn2n.

latex◻ Для latexn=1 неравенство принимает вид latex12, т.е. оно справедливо.

Предположим, требуемое неравенство имеет место при некотором latexn=k и покажем, что оно же справедливо и для latexn=k+1.

Сложим предположение индукции latexk2k с неравенством latex122k. Находим latexk+12k+2k=2k+1, что и требовалось доказать. latex◼

Тест "Метод математической индукции"

Тестовые вопросы по вышеизложенному материалу.

Таблица лучших: Тест "Метод математической индукции"

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Список литературы:

  • Лысенко З.М. Конспект лекций по курсу математического анализа.
  • В.И.Коляда, А.А.Кореновский «Курс лекций по мат.анализу, часть 1» (Одесса «Астропринт» , 2009г.), стр.4.