Loading [MathJax]/jax/output/SVG/jax.js

М2010. Зв’язна клітинна фігура

Задача із журналу «Квант» (2006 рік, №4)

Умова

Для натуральних чисел m і n позначимо через F(m,n) кількість всіх зв’язних клітинних фігур прямокутнику m×n. Доведіть, що парність числа F(m,n) збігається з парність числа n(n+1)2m(m+1)2. (Зв’язна клітинна фігура – це така непорожня множина клітин, що з будь-якої клітини цієї множини можна пройти в будь-яку іншу клітину цієї множини по клітинах цієї множини, переходячи щоразу в сусідню по стороні клітину.)

А.Бадзян

Рішення

Припустимо, що F(m,0)=0. Зв’язні фігури в прямокутнику m×1 – це m фігур з однієї клітини та смужки із двох або більше клітин. Кожна смужка визначається парою клітин – першою та останньою, тому F(m,1)=m+m(m1)2=m(m+1)2.

Нехай у прямокутнику m рядків та n>1 стовпців. Позначимо через l вертикальну вісь симетрії. Кожній зв’язній фігурі відповідає фігура, симетрична щодо l, тому несиметричні щодо l фігури розбиваються на пари, і парність F(m,n) збігається з парністю кількості зв’язних фігур, симетричних щодо l.

Розглянемо деяку фігуру T, симетричну щодо l.

Нехай n непарне, n=2k1, k2. Фігура T містить хоча б одну клітину k-го стовпця, інакше з клітини фігури T неможливо пройти по клітинам T в симетричну відносно l клітину, переходячи кожен раз в сусідню клітину. Зауважимо, що частина T1 фігури T, що розташована в k найлівіших стовпцях, зв’язна. Дійсно, розглянемо дві клітини x та y фігури T1. Нехай x – клітина, що симетрична x відносно l, a x,z1,z2,,zt,y – послідовність клітин, що утворює шлях з x в y по сусідніх клітинах фігури T. Тоді, замінюючи в цьому шляху клітини, що лежать правіше k-го стовпця, на симетричні щодо l, ми отримаємо шлях з x в y по сусідніх клітинах фігури T1 (див. малюнок). Навпаки, якщо фігура T1 розташована у прямокутнику, що складається з k найлівіших



стовпців, зв’язна і містить хоча б одну клітину k-го стовпця, можна однозначно продовжити фігуру T1 до зв’язної фігури T, симетричної відносно l. Кількість зв’язних фігур у прямокутнику m×k дорівнює F(m,k), серед них F(m,k1) фігур лежать у перших k1 стовпцях (тобто не містить клітин k-го стовпця). Отже, кількість зв’язних симетричних щодо l фігур у прямокутнику m×(2k1) дорівнює F(m,k)F(m,k1).

Для парного n=2k, k1, міркуючи аналогічно, встановимо взаємно однозначну відповідність між зв’язними симетричними щодо l фігурами та зв’язними фігурами, що розташовані в перших k стовпцях і що містять хоча б одну клітинку k-го стовпця. Звідси випливає, що кількість зв’язних симетричних щодо l фігур у прямокутнику m×2k дорівнює F(m,k)F(m,k1).

Отже, для n=2k1 и n=2k парність F(m,n) збігається з парністю числа F(m,k)F(m,k1).

Доведемо індукцією по n, що F(m,n) непарно тоді і лише тоді, коли m і n дають залишок 1 або 2 при діленні на 4; звідси відразу випливає твердження задачі. Твердження вірне при n=0 і n=1.

Нехай m дає залишок 0 або 3 при діленні на 4. Припустимо, що це твердження вірне для F(m,0),F(m,1),,F(m,n1), тобто ці числа парні. Якщо n=2k1, k2, або n=2k, k1, то n>k, тому F(m,n) парне, так як F(m,k)F(m,k1) парне. Нехай m дає залишок 1 або 2 при діленні на 4. Припустимо, що твердження вірно для чисел F(m,0),F(m,1),,F(m,n1), тобто F(m,s) непарне тоді і лише тоді, коли s дає залишок від ділення 1 або 2 при діленні на 4. Тоді F(m,s)F(m,s1) непарне тоді і лише тоді, коли s непарне. Звідси випливає, що F(m,n) непарне тоді і тільки тоді, коли n=2(2l+1)1=4l+1 або n=2(2l+1)=4l+2.

А.Бадзян

Задача из журнала «Квант» (2000 год, 3 выпуск) М1707*

Условие

Квадрат клетчатой бумаги, состоящий из n×n клеток, разрезан на 2n прямоугольников. При этом каждый прямоугольник расположен либо целиком ниже, либо выше ступенчатой ломаной, разделяющей квадрат (рис.1). Докажите, что найдется клетка клетчатой бумаги, являющаяся одним из названных прямоугольников.

Рис. 1

Решение

Ступенчатая ломанная разрезает квадрат на два ступенчатых треугольника T1 и T2, при этом основание T1 состоит из n клеток, а основание T2 – из n1 клетки. В силу условия задачи, один из них разрезан на m, а другой – на k прямоугольников, причем m+k=2n. Пока что фиксируем внимание на отдельно взятом ступенчатом треугольнике T, в основании которого s клеток (рис.2). Так как при разрезании T на прямоугольники любые две точки из набора A1,A2,,As должны принадлежать разным прямоугольникам, можно заключить, что T нельзя разрезать на менее чем s прямоугольников.

Рис. 2

Разберем далее тот случай, когда T разрезан в точности на s прямоугольников; тогда каждая из точек A1,A2,,As принадлежит только одному из них и, более того, каждая из s закрашенных клеток принадлежит целиком только одному из s прямоугольников. Не закрашенных клеток, примыкающих по сторонам к закрашенным, на единицу меньше, чем закрашенных, поэтому хотя бы один из s прямоугольников не выйдет за пределы своей заштрихованной клетки, т.е. будет с ней совпадать. Возвращаясь к ступенчатым треугольникам T1 и T2, можно сказать, что mn, а kn1. Но так как m+k=2n, то либо m=n, либо k=n1. Значит, либо в T1, либо в T2 найдется прямоугольник, совпадающий с клеткой клетчатой бумаги.

В.Произволов

М1716. Тетрадь в клетку

Задача из журнала «Квант» (2000 год, 1 выпуск)

Условие

В квадрате клетчатой бумаги размером n×n клеток отмечены N клеток таким образом, что каждая клетка квадрата (отмеченная или не отмеченная) имеет хотя бы одну отмеченную соседнюю клетку. Определите наименьшее возможное значение N, если соседними считать клетки, имеющие общую сторону.

Решение

Рассмотрим случай четного n.

Сначала раскрасим доску в черный и белый цвета в шахматном порядке. Пусть f(n) — это искомое число, а fω(n) — минимальное число белых клеток, которые должны быть отмечены таким образом, чтобы каждая черная клетка имела соседнюю отмеченную белую. Определим подобным образом fb(n). Благодаря симметричности шахматной доски (n=2k), мы имеем fω(n)=fb(n); кроме этого, f(n)=fω(n)+fb(n).

Было бы более удобно посмотреть на доску, развернув ее таким образом, чтобы главная черная диагональ (самая длинная) располагалась горизонтально. Тогда длины остальных черных диагоналей были бы 2,4,,2k,,4,2.

Зачеркнем «нечетные» клетки белых диагоналей, расположенных под черными диагоналями длины 4i2 в первом случае и под черными диагоналями длины 4i+2 во втором случае (см. рисунок).

m1716

В первом случае зачеркнутыми окажутся 2i белых клеток, а во втором случае 2i+1 белых клеток. Таким образом, всего мы зачеркнем
2+4++k++3+1=k(k+1)2
белых клеток. Легко видеть, что каждая черная клетка имеет белую зачеркнутую соседнюю клетку. Из этого следует, что
fω(n)k(k+1)2.

Рассмотрим k(k+1)2 зачеркнутых белых клеток: у них нет общих черных соседних клеток, следовательно, нам нужно по крайней мере k(k+1)2 черных отмеченных клеток с тем, чтобы «охватить» все эти белые клетки. Поэтому
fb(n)k(k+1)2.
Отсюда мы имеем
fω(n)=fb(n)=k(k+1)2,
f(n)=k(k+1).

Аналогично доказывается, что
f(n)={4k21при n=4k1,(2k+1)2при n=4k+1.

Е. Баранов, И. Воронович

M1489

Для каких прямоугольников m×n на клетчатой бумаге, в клетках которых расставлены нули и единицы, можно получить из любой расстановки любую другую, если разрешается изменять числа одновременно в каждой строке, каждом столбце и на каждой прямой, параллельной диагоналями клеток (в частности, в угловых клетках)?

Решение: это всегда возможно для прямоугольников m×n, лишь если m и n не больше 3. поскольку операцию можно выполнять в обратном порядке, достаточно выяснить, для каких таблиц m×n из любой расстановки можно получить таблицу из одних едениц.
Легко видеть, что для прямоугольников 1×n, 2×n и 3×n заменами знаков можно получить таблицу из одних единиц: на рисунке 1 указан порядок, в котором нули, стоящие в некоторых клетках, можно заменить на единицы(цветные линии показывают какой именно — вертикальный или диагональный — «ход» следует делать).
С другой сторны, в прямоугольнике m×n, где m и n не меньше 4, можно выделить фигуру из восьми клеток, показанных на рисунке 2 штриховкой; четность количества единиц не меняется в этих клетках при всех разрешенных преобразованиях — является, как говорят, инвариантом. Таким образом, если в одной из таких фигур стоит нечетное число единиц, то прийти к таблице заполненной единицами, невозможно.
Представляем читателям выяснить, образуют ли такие таблицы из 8 клеток полную систему инвариантов, также следует ли из четности количества единиц в каждой из них возможность преобразовать таблицу в состояние «все единицы», а заодно выяснить, сколько существует классов (неэквивалентных друг другу) таблиц относительно разрешенных в условии преобразований.
А.Галочкин

M1489