Автор: Алиса Ворохта
7.4 Свойства интегрируемых функций
1. Интегрируемость модуля.
2. Интегрируемость линейной комбинации.
3. Интегрируемость произведения.
4. Интегрируемость на подынтервалах.
5. Изменение значений функции.
7.5 Свойства интеграла
$\DeclareMathOperator{\arctg}{arctg}$ 1. Линейность интеграла. Если функции $f$ и $g$ интегрируемы на отрезке $\lbrack a, b\rbrack$, а числа $\alpha, \beta \in \mathbb {R}$, то
$$\int\limits_a^b \lbrack\alpha f\left(x\right) + \beta g\left(x\right)\rbrack\,dx = \alpha\int\limits_a^b f\left(x\right)\,dx + \beta\int\limits_a^b g\left(x\right)\,dx.$$
Это свойство получено нами ранее при доказательстве интегрируемости линейной комбинации.
2. Аддитивность интеграла. Пусть числа $b < a$. Зададим точки $a = x_{0} > x_{1} > \ldots > x_{n} = b,$ выберем точки $\xi_{i} \in \lbrack x_{i+1}, x_{i}\rbrack$ и составим сумму $\displaystyle\sigma = \sum\limits_{i=0}^{n-1} f\left(\xi_{i}\right)\Delta x_{i}.$ Заметим, что в этой сумме все $\Delta x_{i} < 0.$ Ясно, что эту сумму можно получить как интегральную сумму на $\lbrack b, a\rbrack,$ только с противоположным знаком. Это приводит к следующему определению.
Определение. Пусть $b < a$ и функция $f$ интегрируема на $\lbrack b, a\rbrack.$ Тогда по определению полагаем
$$\int\limits_a^b f\left(x\right)\,dx = -\int\limits_b^a f\left(x\right)\,dx.$$
Далее, для каждой функции $f$, определенной в точке $a$, полагаем по определению
$$\int\limits_a^a f\left(x\right)\,dx = 0.$$
Теорема. Пусть $a, b, c$ — произвольные точки на действительной прямой. Если функция $f$ интегрируема на наибольшем из отрезков с концами в двух из этих точек, то она интегрируема также и на двух других отрезках, и справедливо равенство
$$\int\limits_a^b f\left(x\right)\,dx = \int\limits_a^c f\left(x\right)\,dx + \int\limits_c^b f\left(x\right)\,dx.$$
Пусть, например, $a < c < b$ и функция $f$ интегрируема на $\lbrack a, b\rbrack.$ Тогда, по доказанному ранее свойству 4, она интегрируема на отрезках $\lbrack a, c\rbrack$ и $\lbrack c, b\rbrack.$ Возьмем произвольное разбиение $a = x_{0} < x_{1} < \ldots < x_{n} = b$, такое, что $c$ является одной из точек деления. Выберем промежуточные точки $\xi_{i}$ и рассмотрим интегральную сумму $\displaystyle\sigma = \sum\limits_{i=0}^{n-1} f\left(\xi_{i}\right)\Delta x_{i}$. Если $c = x_{j}$, то эту сумму разобьем на две: $\displaystyle\sigma = \sum\limits_{i=0}^{j-1} f\left(\xi_{i}\right)\Delta x_{i} + \sum\limits_{i=j}^{n-1} f\left(\xi_{i}\right)\Delta x_{i}$. При $d(\Pi) \to 0$ первая сумма справа стремится к $\displaystyle\int\limits_a^c f\left(x\right)\,dx$, вторая — к $\displaystyle\int\limits_c^b f\left(x\right)\,dx$, а сумма $\sigma$ стремится к $\displaystyle\int\limits_a^b f\left(x\right)\,dx$. Переходя к пределу при $d(\Pi) \to 0$, получим требуемое равенство.
Пусть теперь $c < a < b$. Тогда, по уже доказанному,
$$\int\limits_c^b f\left(x\right)\,dx = \int\limits_c^a f\left(x\right)\,dx + \int\limits_a^b f\left(x\right)\,dx.$$
Отсюда следует
$$\int\limits_a^b f\left(x\right)\,dx = \int\limits_c^b f\left(x\right)\,dx-\int\limits_c^a f\left(x\right)\,dx = \int\limits_a^c f\left(x\right)\,dx + \int\limits_c^b f\left(x\right)\,dx$$
и теорема доказана полностью.
3. Интеграл от модуля. Пусть функция $f$ интегрируема на отрезке $\lbrack a, b\rbrack \left(a < b\right)$. Тогда
$$\left|\int\limits_a^b f\left(x\right)\,dx\right| \leqslant \int\limits_a^b \left|f\left(x\right)\right| \,dx.$$
Действительно, интегрируемость модуля интегрируемой функции доказана ранее. Докажем неравенство. Для этого выберем произвольное разбиение отрезка $\lbrack a, b\rbrack.$ Тогда для интегральных сумм будем иметь следующее неравенство:
$$\left|\sum\limits_{i=0}^{n-1} f\left(\xi_{i}\right)\Delta x_{i}\right| \leqslant \sum\limits_{i=0}^{n-1} \left|f\left(\xi_{i}\right)\right|\Delta x_{i}.$$
При стремлении к нулю диаметра разбиения интегральная сумма под знаком модуля в левой части стремится к к $\displaystyle\int\limits_a^b f\left(x\right)\,dx$, а сумма справа стремится к $\displaystyle\int\limits_a^b \left|f\left(x\right)\right|\,dx$. Переходя к пределу при $d(\Pi) \to 0$, получаем требуемое неравенство для интегралов.
4. Монотонность интеграла. Пусть функции $f$ и $g$ интегрируемы на $\lbrack a, b\rbrack \left(a < b\right)$ и $f\left(x\right)\leqslant g\left(x\right)$ для всех $x \in \lbrack a, b\rbrack.$ Тогда
$$\int\limits_a^b f\left(x\right)\,dx \leqslant \int\limits_a^b g\left(x\right)\,dx.$$
Действительно, возьмем произвольное разбиение отрезка $\lbrack a, b\rbrack$ и выберем промежуточные точки $\xi_{i}$. Тогда $f\left(\xi_{i}\right)\leqslant g\left(\xi_{i}\right) \left(i = 0, 1, \ldots, n-1\right)$. Умножая эти неравенства на $\Delta x_{i} > 0$ и складывая, получим
$$\sum\limits_{i=0}^{n-1} f\left(\xi_{i}\right)\Delta x_{i}\leqslant\sum\limits_{i=0}^{n-1} g\left(\xi_{i}\right)\Delta x_{i}.$$
Отсюда, устремляя к нулю диаметр разбиения, получаем требуемое неравенство.
Следствие 1. Пусть $f$ — неотрицательная интегрируемая функция на $\lbrack a, b\rbrack \left(a < b\right)$. Тогда
$$\int\limits_a^b f\left(x\right)\,dx \geqslant 0.$$
Следствие 2. Если интегрируемая функция $f$ строго положительна на $\lbrack a, b\rbrack \left(a < b\right)$, то и $$\int\limits_a^b f\left(x\right)\,dx > 0.$$
Действительно, в силу критерия Лебега , найдется точка $x_{0}\in\lbrack a, b\rbrack$, в которой функция непрерывна . Поскольку $f\left(x_0\right) > 0$, то найдется такое $\delta > 0$, что $\displaystyle f\left(x\right) > \frac{1}{2}f\left(x_0\right)$ для всех $x \in \left(x_0-\delta, x_0 + \delta\right) \cap \lbrack a, b\rbrack.$ Выберем отрезок $\lbrack\alpha, \beta\rbrack \subset \left(x_0-\delta, x_0 + \delta\right) \cap \lbrack a, b\rbrack, a\leqslant\alpha < \beta\leqslant b$.Тогда, в силу свойства аддитивности интеграла, получим $$\int\limits_a^b f\left(x\right)\,dx = \int\limits_a^\alpha f\left(x\right)\,dx + \int\limits_\alpha^\beta f\left(x\right)\,dx + \int\limits_\beta^b f\left(x\right)\,dx.$$ Первый и третий интегралы справа неотрицательны в силу следствия, а для второго интеграла, учитывая неравенство $\displaystyle f\left(x\right) \geqslant \frac{1}{2} f\left(x_0\right)$, из свойства монотонности интеграла получим $$\int\limits_\alpha^\beta f\left(x\right)\,dx \geqslant \int\limits_\alpha^\beta \frac{1}{2}f\left(x_0\right)\,dx = \frac{1}{2}f\left(x_0\right)\left(\beta-\alpha\right) > 0.$$
Таким образом, $\displaystyle\int\limits_a^b f\left(x\right)\,dx > 0$.
Следствие 3.Пусть функция $f$ интегрируема на $\lbrack a, b\rbrack$ и $m \leqslant f\left(x\right) \leqslant M$ для всех $x \in \lbrack a, b\rbrack$. Тогда
$$ \begin{equation}\label{prop_of_int_first}m\left(b-a\right) \leqslant \int\limits_a^b f\left(x\right)\,dx \leqslant M\left(b-a\right)\end{equation}.$$
Это следствие сразу вытекает из свойства монотонности интеграла.
Замечание. В условиях следствия 3 найдется такое число $\mu \in \lbrack m, M\rbrack$, что
$$\int\limits_a^b f\left(x\right)\,dx = \mu\left(b-a\right).$$
Действительно, положим $\displaystyle\mu = \frac{1}{\left(b-a\right)}\int\limits_a^b f\left(x\right)\,dx$. Тогда, по следствию 3, $m \leqslant \mu \leqslant M$.
Отметим, что при $a > b$ в такой формулировке это замечание остается в силе, в то время как знаки неравенств в $\eqref{prop_of_int_first}$ меняются на противоположные.
Следствие 4. Если функция $f$ непрерывна на $\lbrack a, b\rbrack$, то найдется такая точка $\xi \in \lbrack a, b\rbrack$, что
$$ \int\limits_a^b f\left(x\right)\,dx = f\left(\xi\right)\left(b-a\right).$$
Действительно, пусть $m$ и $M$ соответственно нижняя и верхняя грани функции $f$ на отрезке $\lbrack a, b\rbrack$, они достигаются в силу первой теоремы Вейерштрасса. По уже доказанному, найдется точка $\mu \in \lbrack m, M\rbrack$, такая, что $\displaystyle\int\limits_a^b f\left(x\right)\,dx = \mu \left(b-a\right)$. По теореме Больцано-Коши о промежуточном значении, найдется такая точка $\xi \in \lbrack a, b\rbrack$, что $f\left(\xi\right) = \mu.$
Замечание. Следствие 4 иногда называют теоремой о среднем значении. Оно тесно связано с теоремой Лагранжа, которую также называют теоремой о среднем значении в дифференциальном исчислении.
Примеры решения задач
Данные примеры читателю рекомендуется решить самому в качестве тренировки.
- Оценить интеграл $\displaystyle\int\limits_{0}^{2\pi} \frac{\,dx}{\sqrt{5 + 2\sin{x}}}$.
Решение
Оценим подынтегральную функцию:
$$-1 \leqslant \sin{x} \leqslant 1 \Rightarrow$$
$$3 \leqslant 5 + 2\sin{x} \leqslant 7 \Rightarrow$$
$$\sqrt{3} \leqslant \sqrt{5 + 2\sin{x}} \leqslant \sqrt{7} \Rightarrow$$
$$\frac{1}{\sqrt{7}} \leqslant \frac{1}{\sqrt{5 + 2\sin{x}}} \leqslant \frac{1}{\sqrt{3}}.$$
Отсюда и из монотонности интеграла следует, что
$$\int\limits_0^{2\pi} \frac{\,dx}{\sqrt{7}} \leqslant \int\limits_0^{2\pi}\frac{\,dx}{\sqrt{5 + 2\sin{x}}}\leqslant\int\limits_0^{2\pi} \frac{\,dx}{\sqrt{3}}.$$
Таким образом,
$$\frac{2\pi}{\sqrt{7}} \leqslant \int\limits_0^{2\pi}\frac{\,dx}{\sqrt{5 + 2\sin{x}}}\leqslant\frac{2\pi}{\sqrt{3}}.$$ - Найти определенный интеграл $\displaystyle\int\limits_0^2 \left|1-x\right|\,dx$.
Решение
Из аддитивности интеграла
$$\int\limits_0^2 \left|1-x\right|\,dx = \int\limits_0^1 \left|1-x\right|\,dx + \int\limits_1^2 \left|1-x\right|\,dx =$$ $$= \int\limits_0^1 \left(1-x\right)\,dx + \int\limits_1^2 \left(x-1\right)\,dx = \int\limits_0^1 \,dx-\int\limits_0^1 x \,dx + \int\limits_1^2 x \,dx-\int\limits_1^2 \,dx =$$ $$= 1-0-\left.\frac{x^2}{2}\right|_0^1 + \left.\frac{x^2}{2}\right|_1^2-(2-1) = 1-\frac{1}{2} + 0 + \frac{2^2}{2}-\frac{1}{2}-1 = 1.$$ - Найти определенный интеграл $\displaystyle\int\limits_0^3 \frac{x^4}{x^2 + 1}\,dx$
Решение
$$\int\limits_0^3 \frac{x^4}{x^2 + 1}\,dx = \int\limits_0^3 \frac{\left(x^4 -1\right) + 1}{x^2 + 1}\,dx =$$ $$= \int\limits_0^3 \frac{\left(x^2-1\right)\left(x^2 + 1\right) + 1}{x^2 + 1}\,dx = \int\limits_0^3 \left(x^2-1 + \frac{1}{x^2 + 1}\right)\,dx.$$
Воспользовавшись свойством линейности интеграла, получим
$$\int\limits_0^3 \left(x^2-1 + \frac{1}{x^2 + 1}\right)\,dx = \int\limits_0^3 x^2 \,dx-\int\limits_0^3 \,dx + \int\limits_0^3 \frac{\,dx}{x^2 + 1} =$$ $$= \left.\frac{x^3}{3}\right|_0^3-(3-0) + \left.\arctg{x}\right|_0^3 = 9-0-3+ \arctg{3}-\arctg{0} =$$ $$=6 + \arctg{3}.$$ - Не вычисляя интегралов, определить какой из них больше: $\displaystyle\int\limits_2^3 e^{-x}\sin{x}\,dx$ или $\displaystyle\int\limits_2^3 e^{-x^2}\sin{x}\,dx$.
Решение
Сравним подынтегральные функции. Пусть $f\left(x\right) = e^{-x}\sin{x}$, $g\left(x\right) = e^{-x^2}\sin{x}$.
$$f\left(x\right)-g\left(x\right) = e^{-x}\sin{x}-e^{-x^2}\sin{x} = \sin{x}\left(e^{-x}-e^{-x^2}\right) =$$ $$= e^{-x}\sin{x}\left(1-e^{-x^2 + x}\right).$$
На промежутке $\lbrack 2, 3\rbrack$ функции $\sin{x}$ и $e^{-x}$ принимают положительные значения (поскольку синус на $\lbrack 0, \pi\rbrack$ положительный). Значит нам достаточно сравнить с нулем выражение $1-e^{-x^2 + x}$. Поскольку на $\lbrack 2, 3\rbrack$ $x^2 > x$, то $-x^2 + x < 0$, а значит $e^{-x^2 + x} < 1$. $1-e^{-x^2 + x} > 0$, из чего следует, что $f\left(x\right) > g\left(x\right)$.
Ответ:
$$\int\limits_2^3 e^{-x}\sin{x}\,dx > \int\limits_2^3 e^{-x^2}\sin{x}\,dx.$$ - Найти среднее значение функции на данном отрезке: $\sin{x}$, $\displaystyle 0 \leqslant x \leqslant \frac{\pi}{2}$.
Решение
Воспользуемся четвертым следствием из свойства монотонности интеграла. Средним значением функции $f\left(x\right)$ на отрезке $\lbrack a, b\rbrack$ называется число $\displaystyle\mu = \frac{1}{\left(b-a\right)}\int\limits_a^b f\left(x\right)\,dx.$
Из этого следует:
$$\mu = \frac{1}{\left(\frac{\pi}{2}-0\right)} \int\limits_0^{\frac{\pi}{2}} \sin{x}\,dx = \left.-\frac{2}{\pi}\cos{x}\right|_0^{\frac{\pi}{2}} = -\frac{2}{\pi}(0-1) = \frac{2}{\pi}.$$
Ответ: $\displaystyle\frac{2}{\pi}.$
Смотрите также
- Тер-Крикоров А. М., Шабунин М. И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М. И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001. – 672 с. — С. 326-332.
- Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003. — 703 с. — С. 570-582.
- Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 2 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1970.- 800 с. — С. 108-116.
Свойства интеграла
Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Свойства интеграла»
М1716. Тетрадь в клетку
Задача из журнала «Квант» (2000 год, 1 выпуск)
Условие
В квадрате клетчатой бумаги размером $n\times n$ клеток отмечены $N$ клеток таким образом, что каждая клетка квадрата (отмеченная или не отмеченная) имеет хотя бы одну отмеченную соседнюю клетку. Определите наименьшее возможное значение $N$, если соседними считать клетки, имеющие общую сторону.
Решение
Рассмотрим случай четного $n$.
Сначала раскрасим доску в черный и белый цвета в шахматном порядке. Пусть $f\left(n\right)$ — это искомое число, а $f_{\omega}\left(n\right)$ — минимальное число белых клеток, которые должны быть отмечены таким образом, чтобы каждая черная клетка имела соседнюю отмеченную белую. Определим подобным образом $f_{b}\left(n\right).$ Благодаря симметричности шахматной доски $\left(n = 2k\right)$, мы имеем $f_{\omega}\left(n\right) = f_{b}\left(n\right)$; кроме этого, $f\left(n\right) = f_{\omega}\left(n\right) + f_{b}\left(n\right)$.
Было бы более удобно посмотреть на доску, развернув ее таким образом, чтобы главная черная диагональ (самая длинная) располагалась горизонтально. Тогда длины остальных черных диагоналей были бы $2, 4, \ldots, 2k, \ldots, 4, 2.$
Зачеркнем «нечетные» клетки белых диагоналей, расположенных под черными диагоналями длины $4i — 2$ в первом случае и под черными диагоналями длины $4i + 2$ во втором случае (см. рисунок).
В первом случае зачеркнутыми окажутся $2i$ белых клеток, а во втором случае $2i + 1$ белых клеток. Таким образом, всего мы зачеркнем
$$2 + 4 + \ldots + k + \ldots + 3 + 1 = \frac{k\left(k+1\right)}{2}$$
белых клеток. Легко видеть, что каждая черная клетка имеет белую зачеркнутую соседнюю клетку. Из этого следует, что
$$f_{\omega}\left(n\right) \leqslant \frac{k\left(k+1\right)}{2}.$$
Рассмотрим $\displaystyle\frac{k\left(k+1\right)}{2}$ зачеркнутых белых клеток: у них нет общих черных соседних клеток, следовательно, нам нужно по крайней мере $\displaystyle\frac{k\left(k+1\right)}{2}$ черных отмеченных клеток с тем, чтобы «охватить» все эти белые клетки. Поэтому
$$f_{b}\left(n\right) \geqslant \frac{k\left(k+1\right)}{2}.$$
Отсюда мы имеем
$$f_{\omega}\left(n\right) = f_{b}\left(n\right) = \frac{k\left(k+1\right)}{2},$$
$$f\left(n\right) = k\left(k+1\right).$$
Аналогично доказывается, что
\begin{equation*}
f\left(n\right) =
\begin{cases}
4k^2 — 1 &\text{при $n = 4k — 1$,}\\
\left(2k + 1\right)^2 &\text{при $n = 4k + 1$.}
\end{cases}
\end{equation*}
М1719. Последовательность
Задача из журнала «Квант» (2000 год, 1 выпуск)
Условие
Последовательность $a_{1}$, $a_{2}$, $a_{3}$, $\ldots$ задана своим первым членом $a_{1} = 1$ и рекуррентной формулой $\displaystyle a_{n+1} = a_{n} + \frac{1}{a_{n}}$, где $n = 1, 2, 3, \ldots$
- Докажите, что $a_{100} > 14$.
- Найдите $\lbrack a_{1000}\rbrack$, то есть укажите такое целое число $m$, для которого $m \leqslant a_{1000} < m + 1$.
- Докажите существование и найдите значение предела $\displaystyle\lim\limits_{n \to \infty} \frac{a_{n}}{\sqrt{n}}$.
Решение
- Возводим равенство $\displaystyle a_{n+1} = a_{n} + \frac{1}{a_{n}}$ в квадрат и «отбрасываем лишнее»: $$a_{n+1}^{2} = a_{n}^{2} + 2 + \frac{1}{a_{n}^{2}} > {a_{n}^{2}} + 2.$$ Вспомнив, что $a_{1}^{2} = 1$, получаем одно за другим неравенства $a_{2}^{2} > a_{1}^{2} + 2 = 3$, $a_{3}^{2} > a_{2}^{2} + 2 > 3 + 2 = 5$, и вообще (при $n > 1$), $$\begin{equation}\label{m1719_first} a_{n}^{2} > 2n — 1\end{equation}.$$ В частности, $a_{100}^{2} > 199 > 196 > 14^{2}$, что и требовалось.
-
Ответ: $\lbrack a_{1000}\rbrack = 44$.
При $n = 1000$ неравенство $\eqref{m1719_first}$ дает $a_{1000}^{2} > 1999 > 44^{2}$, так что $\lbrack a_{1000}\rbrack \geqslant 44$. Чтобы получить оценку сверху, введем величины $b_{n}$, такие что $a_{n}^{2} = 2n — 1 + b_{n}$. В силу неравенства $\eqref{m1719_first}$, имеем $b_{n} > 0$ при $n > 1$. Далее, запишем формулу $\displaystyle a_{n+1}^{2} = a_{n}^{2} + 2 + \frac{1}{a_{n}^{2}}$ в виде
$$2n + 1 + b_{n+1} = 2n — 1 + b_{n} + 2 + \frac{1}{2n — 1 + b_{n}},$$
откуда
$$b_{n+1} = b_{n} + \frac{1}{2n — 1 + b_{n}} \leqslant b_{n} + \frac{1}{2n — 1}.$$По индукции из последнего неравенства следует, что
$$b_{n+1} \leqslant b_{1} + \frac{1}{1} + \frac{1}{3} + \ldots + \frac{1}{2n — 3} + \frac{1}{2n — 1}. $$
Поскольку $b_{1} = 0$, имеем, в частности,
$$b_{1000} \leqslant 1 + \frac{1}{3} + \frac{1}{5} + \ldots + \frac{1}{1995} + \frac{1}{1997}.$$
Осталось оценить сумму, оказавшуюся в правой части последнего неравенства. Сгруппируем слагаемые:
$$b_{1000} \leqslant 1 + \left(\frac{1}{3} + \frac{1}{5} + \frac{1}{7}\right) + \left(\frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \frac{1}{15} + \ldots + \frac{1}{25}\right) + \\ + \left(\frac{1}{27} + \frac{1}{29} + \frac{1}{31} + \frac{1}{33} + \ldots + \frac{1}{79}\right) + \left(\frac{1}{81} + \frac{1}{83} + \ldots + \frac{1}{241}\right) + \\ + \left(\frac{1}{243} + \frac{1}{245} + \ldots + \frac{1}{727}\right) + \left(\frac{1}{729} + \frac{1}{731} + \ldots + \frac{1}{1997}\right).$$
(Принцип очень простой: в первой скобке три слагаемых, наибольшее из которых равно $\displaystyle\frac{1}{3}$; во второй — девять, наибольшее из которых $\displaystyle\frac{1}{9}$; …; в пятой — $243$ слагаемых, наибольшее $\displaystyle\frac{1}{243}$; наконец, в шестой скобке наибольшее слагаемое равно $\displaystyle\frac{1}{729}$, а слагаемых всего лишь $635$.) Следовательно, $b_{1000} < 7$. Это позволяет утверждать, что $$a_{1000}^{2} < 2000 - 1 + 7 < 2025 = 45^2,$$ откуда $a_{1000} < 45$. -
Использованный при решении пункта б) прием позволяет доказать, что $\displaystyle\lim\limits_{n\to \infty}\frac{b_{n}}{n} = 0.$ Поскольку $a_{n} = \sqrt{2n — 1 + b_{n}}$, получаем ответ:
$$\displaystyle\lim_{n \to \infty} \frac{a_{n}}{\sqrt{n}} = \sqrt{2}.$$