Processing math: 100%

Подгруппы. Критерий подгруппы

Определение

Подмножество [latex]H[/latex] группы [latex]G[/latex] называется подгруппой этой группы (обозначают [latex]H \le G[/latex]), если оно само является группой относительно сужения операции, определенной в группе [latex]G[/latex].

Теорема (Критерий подгруппы)

Непустое подмножество [latex]H[/latex] группы [latex]G[/latex] будет подгруппой тогда и только тогда, когда [latex]h_{1}h_{2}\in H[/latex] и [latex]h_{1}^{-1}\in H[/latex] для всех [latex]h_{1},h_{2} \in H[/latex]

Обозначается

[latex]<G, \ast>[/latex] — группа.

[latex]H \subseteq G[/latex]

[latex]H \le G \Leftrightarrow[/latex] [latex](\forall h_{1}, h_{2}\in H)[h_{1}\ast h_{2}^{-1}\in H][/latex]

Спойлер

 

Спойлер

Тест

Подгруппы. Критерий подгруппы.

Таблица лучших: Подгруппа

максимум из 10 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Источник

Г. С. Белозеров. Конспект лекций по линейной алгебре.

В. С. Монахов. Учебное пособие «Введение в теорию конечных групп и их классов». Гомель 2003 (стр. 20-21)

А. Г. Курош. Курс высшей алгебры. Издание десятое. Стереотипное. Москва «Наука» 1971. (стр. 398-399)

И. В. Проскуряков.  Сборник задач по линейной алгебре. Издание шестое. Стереотипное. Москва «Наука», 1984. (стр. 218-220)