Выясним, в чём заключается геометрический смысл предела функции в точке. Построим график функции $y=f(x)$ и отметим на нём точки $x=a$ и $y=A$.
Предел функции $y=f(x)$ в точке $x\rightarrow a$ существует и равен $A$, если для любой $\varepsilon$-окрестности точки $A$ можно указать такую $\delta$-окрестность точки $a$, что для любого $x$ из этой $\delta$-окрестности значение $y=f(x)$ будет находится в $\varepsilon$-окрестности точки $A$.
Отметим, что по определению предела функции в точке для существования предела при $x\rightarrow a$ не важно, какое значение принимает функция в самой точке $a$. Можно привести примеры, когда функция не определена при $x=a$ или принимает значение, отличное от $A$. Тем не менее, предел может быть равен $A$.
Определение 1.1. (определение по Коши или на языке [latex]\varepsilon — \delta[/latex]):
[latex]A[/latex] — предел функции [latex]f(x)[/latex] в точке [latex]a[/latex] (и пишут \(\lim\limits_{x\rightarrow a } f(x) = A\)), если: [latex]\forall \varepsilon > 0 \exists \delta > 0:\forall x: 0 < |x-a| < \delta \Rightarrow |f(x) — A| < \varepsilon[/latex] В определении допускается, что [latex]x \neq a[/latex], то есть [latex]a[/latex] может не принадлежать области определения функции.
Определение 1.2. (определение по Гейне):
[latex]A[/latex] называется пределом функции [latex]f(x)[/latex] в точке [latex]a[/latex], если [latex]\forall \left \{ x_{n} \right \}\rightarrow a[/latex], [latex]x_n\ne a[/latex] то есть [latex]\lim\limits_{n\rightarrow \infty } x_{n} = a[/latex], соответствующая последовательность значений [latex]{f(x_{n})} \rightarrow A[/latex], то есть [latex]\lim\limits_{n\rightarrow \infty } f(x_{n}) = A[/latex].
Замечание 1.1.
Из определения предела функции по Гейне следует, что функция не может иметь в точке два разные предела.
Замечание 1.2.
Понятие предела функции в точке есть локальное понятие: существование и значение предела полностью определяется значениями функции в как угодно малой окрестности этой точки.
Замечание 1.3.
[latex]\forall x:0<|x-a|<\delta[/latex]
Данную запись в определении можно сформулировать иначе: точка [latex]x[/latex] принадлежит проколотой [latex]\delta[/latex]-окрестности точки [latex]a[/latex]([latex]x\in \dot{U_{\delta }}(a)[/latex])
2. Эквивалентность определений
Пусть число [latex]A[/latex] является пределом функции [latex]f(x)[/latex] в точке [latex]a[/latex] по Коши. Выберем произвольную подходящую последовательность [latex]x_{n}[/latex] , [latex]n \in N[/latex], то есть такую, для которой [latex]\lim\limits_{n\rightarrow \infty } x_{n} = a[/latex]. Покажем, что [latex]A[/latex] является пределом по Гейне.
Зададим произвольное [latex]\varepsilon > 0[/latex] и укажем для него такое [latex]\delta > 0[/latex], что для всех [latex]x[/latex] из условия [latex]0 < |x-a| < \delta[/latex] следует неравенство [latex]|f(x)-A | < \varepsilon[/latex]. В силу того, что [latex]\lim\limits_{n\rightarrow \infty } x_{n} = a[/latex], для [latex]\delta > 0[/latex] найдётся такой номер [latex]n_{\delta }\in N[/latex], что [latex]\forall n\geq n_{\delta }[/latex] будет выполняться неравенство [latex]|f(x_{n})-A| < \varepsilon[/latex], то есть [latex]\lim\limits_{n\rightarrow \infty } f(x_{n}) = A[/latex].
Докажем теперь обратное утверждение: предположим, что [latex]\lim\limits_{x\rightarrow a } f(x) = A[/latex] по Гейне, и покажем, что число [latex]A[/latex] является пределом функции [latex]f(x)[/latex] в точке [latex]a[/latex] по Коши. Предположим, что это неверно, то есть: [latex]\exists \varepsilon_{0} > 0 \forall \delta > 0 :\exists x_{\delta }:0<|x_{\delta }-a|<\delta \Rightarrow |f(x_{\delta })-A|\geq \varepsilon[/latex]. В качестве [latex]\delta[/latex] рассмотрим [latex]\delta = \frac{1}{n}[/latex], а соответствующие значения [latex]x_{\delta }[/latex] будем обозначать [latex]x_{n}[/latex]. Тогда при любом [latex]n\in N[/latex] выполняются условия [latex]|x_{n}-a|<\frac{1}{n}[/latex] и [latex]|f(x_{n})- A | \geq \varepsilon[/latex]. Отсюда следует, что последовательность является подходящей, но число [latex]A[/latex] не является пределом функции [latex]f(x)[/latex] в точке [latex]a[/latex]. Получили противоречие.
Пусть функция [latex]f[/latex] определена на некотором промежутке. Совокупность всех ее первообразных на этом промежутке называется неопределённым интегралом от функции [latex]f[/latex] и обозначается $$\int f(x)dx.$$
Символ [latex]\int[/latex] называется знаком интеграла, а [latex]f(x)[/latex] —подынтегральной функцией.
Следует отметить, что всякое равенство, в обеих частях которого стоят неопределённые интегралы, есть равенство между множествами.
Под знаком интеграла пишут не саму функцию [latex]f[/latex], а ее произведение на дифференциал. Это делается, например, для того, чтобы указать, по какой переменной ищется первообразная.
Если [latex]\int f(x)dx=F(x)+C[/latex], то для любого действительного числа [latex]\alpha\ne 0[/latex] [latex] \int[\alpha f(x)] dx=\alpha F(x)+C[/latex], или
Это равенство очевидно следует из определения. Заметим, что при [latex]\alpha=0[/latex] оно не верно по той причине, что в левой части совокупность всех постоянных, а в правой — тождественный нуль.
[свернуть]
Спойлер
Если [latex] \int f(t)dt=F(t)+C[/latex], то для любого [latex] a\ne 0[/latex] и для любого [latex]b[/latex]
Если [latex]f[/latex] и [latex]g[/latex] имеют первообразные на промежутке [latex]\bigtriangleup[/latex], а [latex]\alpha[/latex] и [latex]\beta[/latex] — числа, то функция [latex]\alpha f+\beta g[/latex] также имеет первообразную на [latex]\bigtriangleup[/latex], причём при [latex]\alpha^2+\beta^2>0[/latex] выполняется равенство
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Результаты
Правильных ответов: 0 из 8
Ваше время:
Время вышло
Вы набрали 0 из 0 баллов (0)
Средний результат
Ваш результат
Рубрики
Математический анализ0%
Ваш результат был записан в таблицу лидеров
Загрузка
1
2
3
4
5
6
7
8
С ответом
С отметкой о просмотре
Задание 1 из 8
1.
Вставьте пропущенное слово
Нахождение неопределённого интеграла от заданной функции называют (интегрированием).
Правильно
Неправильно
Задание 2 из 8
2.
Вставьте пропущенное слово.
Под знаком интеграла пишут не саму функцию f, а ее произведение на (дифференциал). Это делается, например, для того, чтобы указать, по какой переменной ищется первообразная.
Правильно
Неправильно
Задание 3 из 8
3.
Какая из следующих формул — линейность интеграла?
Правильно
Неправильно
Задание 4 из 8
4.
Отсортируйте по возрастанию, при [latex]x=1,[/latex] [latex]C=1[/latex]
$$\int cos(x)dx$$
$$\int dx$$
$$\int e^x dx$$
Правильно
Неправильно
Задание 5 из 8
5.
Функция [latex]F(x)[/latex] называется первообразной функции [latex]f(x)[/latex] на некотором промежутке, если в каждой точке этого промежутка справедливо равенство:
Правильно
Неправильно
Задание 6 из 8
6.
Если [latex]y=f(x)[/latex] непрерывна на некотором промежутке, то она имеет на этом промежутке
Правильно
Неправильно
Задание 7 из 8
7.
Неверными являются следующие свойства неопределенного интеграла
Правильно
Неправильно
Задание 8 из 8
8.
Оцените, пожалуйста, мой тест
1-ужасно
2-неплохо
3-нормально
4-хорошо
5-отлично
Спасибо!
Правильно
Неправильно
Таблица лучших: Неопределённый интеграл и его свойства
Дифференцируемыев промежутке [latex]\bigtriangleup[/latex] функции [latex]F(x)[/latex] и [latex]G(x)[/latex] будут в этом промежутке первообразными одной и той же функции [latex]f(x)[/latex] тогда и только тогда, когда разность их значений для любого [latex]x\in\bigtriangleup[/latex] постоянна.
[latex]F(x)-G(x)=C=const[/latex]
Спойлер
Пусть [latex]F(x)[/latex] — некоторая первообразная функции [latex]f(x)[/latex] в промежутке [latex]\bigtriangleup[/latex]. Следовательно, по определению [latex]F'(x)=f(x)[/latex]. Но тогда и функция [latex]G(x)=F(x)-C[/latex] ([latex]C=const[/latex]) также является промежутке первообразной функции [latex]f(x)[/latex] в этом промежутке , поскольку [latex]G'(x)=(F(x)-C)’=F'(x)=f(x)[/latex].
Но в силу признака постоянства дифференцируемой функции, вытекающего из теоремы Лагранжа, равенство [latex]H'(x)=0[/latex] означает, что [latex]H(x)=F(x)-G(x)=C=const[/latex].
Итак, доказана эквивалентность тому, что функция [latex]F(x)[/latex] и [latex]G(x)[/latex] могут быть первообразными лишь одной и той же функции.
[свернуть]
Литература.
Зарубин В.С., Интегральное исчисление функций одного переменного. — М.: Изд-во МГТУ им. Н.Э. Баумана, 1999., Стр. 15
Тест
Лимит времени: 0
Навигация (только номера заданий)
0 из 1 заданий окончено
Вопросы:
1
Информация
Теорема о разнице двух первообразных
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
На любом промежутке, не содержащем точку 0, функция [latex]sgn x[/latex] постоянна и равна 1 (или -1). Следовательно, любая ее первообразная имеет вид [latex]F(x)=x+C[/latex] (или [latex]F(x)=-x+C[/latex]), где [latex]C[/latex] — некоторое число.
Рассмотрим теперь промежуток, содержащий точку 0, например (-1,1). На интервале (-1,0) любая первообразная функции [latex]sgn x[/latex] имеет вид [latex]F_1=-x+C_1[/latex], а на интервале (0,1) любая первообразная функции [latex]sgn x[/latex] имеет вид [latex]F_2(x)=x+C_2[/latex].
При любом выборе постоянных [latex]C_1[/latex] и [latex]C_2[/latex] мы получаем на интервале (-1, 1) функцию, не имеющую производной в точке x=0. Например, если выбрать [latex]C_1=C_2=C[/latex], то получим функцию [latex]F(x)=|x|+C[/latex], недифференцируемую в точке 0. Следовательно, функция [latex]sgn x[/latex] не имеет первообразнойна интервале (-1, 1) и вообще на любом промежутке, содержащем точку 0.
[свернуть]
Спойлер
Рассмотрим поведение функции в окрестности точки [latex]0[/latex]. Как видно [latex]lim_{x\rightarrow -0}\: sign(x)=-1[/latex] и [latex]lim_{x\rightarrow +0}\: sign(x)=1[/latex]. По теореме* предел функции в точке [latex]0[/latex] не существует.
* Функция [latex]f(x)[/latex] имеет предел в точке [latex]a[/latex] тогда и только тогда, когда существуют равные между собой односторонние пределы в этой точке. В этом случае их общее значение является пределом функции в точке [latex]a[/latex].