Processing math: 100%

M1611

Формулировка

Две окружности пересекаются в точках A и B. Через точку A проведена прямая, вторично пересекающая первую окружность в точке C, а вторую в точке D. Пусть M и N — середины дуг BC и BD, не содержащих точку A, а K — середина отрезка CD. Докажите, что угол MKN прямой. (Можно считать, что точки C и D лежат по разные стороны от точки A.)

Доказательство

M1611

Пусть N1 — точка, симметричная точке N относительно K (см.рисунок). Тогда bigtriangleupKCN1=bigtriangleupKDN, поэтому CN1=ND и angleN1CK=angleNDK=piangleABN. Заметим ещё, что angleMCK=piangleABM.
Складывая полученные равенства, находим, что angleN1CM=angleMBN. Кроме того, из условия следует, что CM=MB и BN=ND (т.е. BN=CN1). Значит bigtriangleupMCN1=bigtriangleupMBN, откуда MN1=MN.
MK — медиана в равнобедренном треугольнике MNN1, поэтому angleMKN=90circ.

Замечание

Задача имеет много других решений. Например, можно воспользоваться подобием треугольников MEK и KFN, где E и F — середины отрезков BC и BD соответственно. Эти треугольники имеют две пары взаимно перпендикулярных сторон: EK и FN, ME и KF; следовательно, перпендикулярны и их третьи стороны.

Кроме того, соображения, использующие композицию поворотов, позволяют отказаться от дополнительного условия в задаче (о том, что точки C и D лежат по разные стороны от A), которое было задано лишь затем, чтобы избежать разбора различных случаев. Действительно, рассмотрим композицию поворотов RbetaMcircRalphaN — на углы alpha=angleDNB и beta=angleBMC вокруг точек N и M соответственно (углы передпологаются ориентированными).
Заметим, что alpha+beta=180circ, поэтому RbetaMcircRalphaN=Zx — центральная симметрия относительно некоторой точки X. Но Zx(D)=(RbetaMcircRalphaN)=RbetaM(B)=C, поэтому X — середина отрезка CD, т.е. точка K. Если N1=ZK(N), то N1=(RbetaMcircRalphaN)(N)=RbetaM(N), т.е. bigtriangleupNMN1, равнобедренный и angleMKN=90circ

Д.Терешин

M1479

Условие

Число 26 можно тремя способами разложить в сумму четырех натуральных чисел так, что все 12 чисел различны:

26=1+6+8+11=2+5+9+10=3+4+7+12.

Для каждого натурального n обозначим через K=K(n) наибольшее число четверок натуральных чисел, дающих в сумме n и состоящих из 4K различных чисел. Докажите, что

K(n)=[n28]

[x]- целая чатсь числа x.

Решение

Пусть выбрано k четверок различных натуральных чисел, в сумме дающих n. Обозначим через s сумму всех 4k чисел, входящих в эти четверки. Тогда, одной стороны, s=nk, а с другой стороны,

s1+2++4k=2k(4k+1).

Поэтому nk2k(4k+1), откуда kn28.

Осталось привести набор [n28] четверок чисел, удовлетворяющий условиям задачи.

Обозначим число [n28] через a и пусть n=8a+2+t, где t=0,1,2,,7.

Рассмотрим следующую таблицу чисел:

123a1a2a2a12a2a+2a+12a+12a+22a+33a13a4a+t4a+t14a+t23a+t+23a+t+1

Числа, стоящие в первом столбце, образуют первую четверку чисел, стоящие во втором — вторую четверку чисел, и так далее.

Л.Курляндчик

M2098

Задача М2098

Двое играют в игру, делая ходы по очереди: первый рисует на плоскости многоугольник, не налегающий на уже нарисованные, а второй ответным ходом раскрашивает его в один из 2008 цветов. Второй игрок хочет, чтобы любые два многоугольника, граничащие по отрезку сторны, имели разные цвета. Сможет ли первый игрок помешать ему?

Ответ: сможет

Решение

М2098Докажем индукцией по n, что первый может играть так, что нарисованные им многоугольники будут давать в объединении некоторый многоугольник Pn, на границу которого выходят многоугольники не менее n цветов. Отсюда будет следовать, что никакого конечного числа цветов недостаточно.

База индукции очевидна. Пусть утверждение верно для n=k, докажем его для n=k+1. Из предположения индукции следует, что первый игрок может играть так, чтобы нарисованные многоугольники давали в объединении k многоугольников P(1)k,P(2)k,cdots,P(k)k, на границу каждого из которых выходят многоугольники не менее k цветов. На границе многоугольника P(1)k выделим отрезок Delta1 некоторго цвета 1, на границе многоугольника P(2)k выделим отрезок Delta2 некоторго цвета 2, отличного от 1, и т.д., на границе многоугольника P(k)k выделим отрезок Deltak некоторго цвета k, отличного от уже определенных цветов 1,2,cdots,k1. Пусть теперь первый нарисует многоугольник P, пересекающийся с многоугольником P(i)k по части отрезка Deltai для всех i=1,2,cdots,k (рис.). Второй игрок должен раскрасить многоугольник P в цвет, отличный от цветов 1,2,cdots,k. Тогда на границу многоугольника, являющего объединением многоугольников P,P(1)k,P(2)k,cdots,P(k)k, выходят не менее k+1 цветов. Переход индукции доказан.

Замечания

Строгое доказательство существования многоугольника P из решения задачи далеко не просто (хотя интуитивно все очевидно), оно следует из известной топологической теоремы Жордана.

Отметим, что вопрос, поставленный в задаче, уже рассматривался в «Задачнике «Кванта»» для случая, когда первому игроку позволяется рисовать многоугольники лишь специального вида. Результат этой задачи интресно сопоставить также со знаменитой теоремой о четырех красках, согласно которой для раскрашивания правильным образом любой карты на плоскости достаточно лишь четырех цветов.

Е.Гик, П.Кожевников

M1538

Условие:

Прямоугольник atimesb(a>b) разбит на прямоугольные треугольники, граничащие друг с другом только по целым сторонам, так что общая сторона двух треугольников всегда служит катетом одного и гипотенузой другого.Докажите, что fracabgeq2.

Решение:

Пусть наш прямоугольник — ABCD. Докажем, что вершина треугольника разбиения не может лежать внутри прямоугольника. Действительно, допустим противное, пусть хотя бы одна вершина внутри прямоугольника существует. Значит, существуют и стороны треугольников разбиения, которые обладают таким свойством: хотя бы один конец этой стороны лежит внутри прямоугольника. Рассмотрим множество M сторон, обладающих этим свойством. По условию задачи, эта сторона для одного из примыкающих к ней треугольников разбиения служит гипотенузой. Тогда катет этого треугольника, выходящий из этой же точки, а следовательно, тоже принадлежащий множеству M, будет короче гипотенузы, т.е. короче кратчайшего отрезка множества M. Противоречие. Итак, все вершины треугольников разбиения лежат на границе прямоугольника.

M1538

Теперь рассмотрим самую длинную из сторон треугольников разбиения: пусть это сторона m. Она принадлежит одной из сторон прямоугольника. Действительно, иначе m служила бы катетом для некоторого треугольника, а его гипотенуза был бы ещё длиннее. Пусть m лежит на стороне AB прямоугольника (см. рисунок).

Рассмотрим треугольник разбиения, гипотенузой которого служит m. Вершина его прямого угла может лежать только на стороне CD. Высота этого треугольника равна стороне BC. Но высота h прямоугольного треугольника не превышает половины гипотенузы, следовательно, mgeq2h, откуда ABgeq2BC, что и требуется.

А.Шаповалов, Н.Константинов

M1537. Произведение и разность чисел

Условие:

Про n чисел, произведение которых равно p, известно, что разность между p и каждым из этих чисел — нечётное целое число. Докажите, что все эти числа иррациональны.

Решение:

Пусть x — одно из этих n чисел. x+b1,x+b2,,x+bn1 — остальные и

p=x(x+b1)(x+b2)(x+bn+1)=x+c,(1)

где, по условию, c нечётно, а b1,b2,,bn1 должны быть чётными целыми числами. Равенство (1) можно записать, раскрыв скобки в виде

xn+a1xn1+a2xn2++an2x2+xn1x=c,(2)

где a1,,an2 — чётные, а an1=b1b2bn11 и c — нечётные числа.Предположив, что x — рациональное число, мы сразу же убедимся, что x должно быть целым:если x=k/d — несократимая дробь, d>1, то, подставив x в (2) и умножив обе части на dn1 , мы придём к противоречию.Но и целым x тоже быть не может: и при чётном, и при нечётном x левая часть — четная (в последнем случае два крайние числа нечётны, а остальные чётны), а c — нечётно. Полученное противоречие доказывает, что x (и любой из остальных корней уравнения (1) с чётными b, и нечётным c) может быть только иррациональным.

Н.Васильев, Г.Гальперин