Пусть задана функция нескольких переменных [latex]A\subset \mathbb{R}^n \rightarrow \mathbb{R} [/latex] и a —предельная точка множества [latex]A[/latex]. Если для любого числа [latex]M>0[/latex] существует такое число [latex]\delta [/latex], что при [latex]x\in A\cap U(a,\delta )[/latex] выполняется неравенство [latex]f(x)> M ( \left | f(x) \right | > M)[/latex], то говорят, что функция [latex]f(x)[/latex] стремится к + [latex]\infty[/latex] при, [latex]x\underset{A}{\rightarrow}a[/latex] и пишут:
[latex]\lim\limits_{x\to a}=+\infty[/latex] [latex](\lim\limits_{x\to a}=-\infty[/latex] или [latex]\lim\limits_{x\to a} =\infty )[/latex]
Во всех трех случаях функцию [latex]f(x)[/latex] называют бесконечно большой при [latex]x\underset{A}{\rightarrow}a[/latex].
Пример
Функция [latex]f(x, y) = \frac{1}{x^2+y^2}[/latex] является бесконечно большой при [latex](x, y) \rightarrow (0, 0)[/latex] Функция [latex]g(x, y) = \frac{x}{x^2+y^2}[/latex] стремится к [latex]\infty[/latex] при [latex](x, y)\underset{A}{\rightarrow} (0, 0)[/latex], если [latex]A[/latex] — сектор, заключенный между прямыми [latex]y = x[/latex] и [latex]y = {-x}[/latex] и расположенный в правой полуплоскости [latex]x > 0[/latex]. В самом деле, в этом секторе [latex]\left | y \right | < \left | x \right |[/latex] и поэтому:
[latex]\frac{x}{x^2+y^2}> \frac{x}{2x^2} = \frac{1}{2x}[/latex]
Функция [latex]g(x, y)[/latex] стремится к [latex]- \infty[/latex] при [latex](x, y)\underset{A}{\rightarrow} (0, 0)[/latex], если [latex]A[/latex] — сектор, заключенный между прямыми [latex]y = x[/latex] и [latex]y = {-x}[/latex] и расположенный в левой полуплоскости x < 0, поскольку в этом секторе [latex]\left | y \right | < \left | x \right |[/latex] и поэтому:
[latex]\frac{x}{x^2+y^2}< \frac{x}{2x^2} = \frac{1}{2x}[/latex]
Если [latex]A = {(x, y):x = 0, y \in R}[/latex]— ось ординат, то [latex]g(x, y) = 0[/latex] на [latex]A[/latex] и функция [latex]g(x, y)[/latex] является бесконечно малой при [latex](x, y)\underset{A}{\rightarrow} (0, 0)[/latex].
Пусть точка [latex]A[/latex] принадлежит области определения функции [latex] u=f(M)[/latex] нескольких переменных и любая [latex]\varepsilon[/latex]-окрестность точки [latex]A[/latex] содержит отличные от [latex]A[/latex] точки области определения этой функции.
Функция [latex] u=f(M)[/latex] называется непрерывной на множестве [latex]\left \{ M \right \}[/latex], если она непрерывна в каждой точке этого множества.
Основные свойства непрерывных функций нескольких переменных:
Теорема об устойчивости знака непрерывной функции:
Если функция [latex] u=f(M)[/latex] непрерывна в точке [latex]A[/latex] евклидова пространства [latex] E^m [/latex] и если [latex] f(A)\neq0 [/latex], тo существует такая [latex] \delta [/latex] окрестность точки [latex]A[/latex], в пределах которой во всех точках области своего задания [latex] f(M)[/latex] не обращается в нуль и имеет знак совпадающий со знаком[latex] f(M)[/latex]. Справедливость этой теоремы непосредственно вытекает из определения непрерывности функции в терминах «[latex] \varepsilon — \delta [/latex]».
Теорема о прохождении непрерывной функции через любое промежуточное значение:
Пусть функция [latex] u=f(M)[/latex] непрерывна во всех точках связного множества [latex]\left \{ M \right \}[/latex] евклидова пространства [latex]E^{m}[/latex], причем [latex] f(A)[/latex] и [latex] f(B)[/latex] — значения этой функции в точках [latex]A[/latex] и [latex]B[/latex] этого множества. Пусть, далее, [latex]C[/latex] — любое число, заключенное между [latex] f(A)[/latex] и [latex] f(B)[/latex] . Тогда на любой непрерывной кривой [latex]L[/latex], соединяющей точки [latex]A[/latex] и [latex]B[/latex] и целиком располагающейся в [latex] \left \{ M \right \} [/latex], найдется точка N такая, что [latex] f(N)=C [/latex].
Спойлер
Пусть
[latex]x_{1}=\varphi_{1}t[/latex], [latex]x_{2}=\varphi_{2}t[/latex], [latex]\ldots[/latex], [latex]x_{m}=\varphi_{m}t[/latex], [latex]\alpha \le t \le \beta[/latex],
— уравнения непрерывной кривой [latex]L[/latex], соединяющий точки [latex]A[/latex] и [latex]B[/latex] множества [latex]\left \{ M \right \}[/latex] и целиком располагающейся в [latex]\left \{ M \right \}[/latex].
На сегменте [latex][\alpha, \beta][/latex] определена сложная функция [latex] u=f(x_{1}, x_{2}, \ldots, x_{m})[/latex], где и [latex]x_{i}=\varphi_{i}t[/latex], [latex]i=1, 2, \ldots, m[/latex], [latex]\alpha \le t \le \beta[/latex]. Очевидно, значение этой функции на сегменте [latex][\alpha, \beta][/latex] совпадают со значениями функции [latex] u=f(M)[/latex] на кривой [latex]L[/latex]. Указанная сложная функция одной переменной [latex]t[/latex], в силу непрерывности сложной функции, непрерывна на сегменте [latex][\alpha, \beta][/latex] и согласно второй теореме Больцано-Коши, в некоторой точке [latex]\xi[/latex] сегмента [latex][\alpha, \beta][/latex] принимает значение [latex]C[/latex]. По этому в точке [latex]N[/latex] кривой [latex]L[/latex] с координатами [latex]\varphi_{1}(\xi)[/latex], [latex]\varphi_{2}(\xi), \ldots,[/latex] [latex]\varphi_{m}(\xi)[/latex] справедливо равенство [latex]f(N)=C[/latex]. Теорема доказана.
причём $latex=f(a-0)=f(a+0)\neq f(a),$ то точка $latex=a$ называется точкой устранимого разрыва.(название устранимый, оправдывает себя), его можно устранить изменив значение функций в точке $latex=a$ .
Точка $latex=a$ называется точкой разрыва второго рода, если она не является точкой разрыва первого рода и точкой устранимого разрыва, то есть если хотя бы один из сторонних пределов либо не существует, либо бесконечен.
Тест расчитан на людей которые внимательно изучили разделы: «Точки разрыва монотонной функции» и «Классификация точек разрыва», и следовали всем рекомендациям
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Результаты
Правильных ответов: 0 из 5
Ваше время:
Время вышло
Вы набрали 0 из 0 баллов (0)
Рубрики
Нет рубрики0%
Математический анализ0%
Ваш результат был записан в таблицу лидеров
Загрузка
1
2
3
4
5
С ответом
С отметкой о просмотре
Задание 1 из 5
1.
Количество баллов: 8
Как классифицируются точки разрыва?
Правильно
Неправильно
Задание 2 из 5
2.
Количество баллов: 6
Доказательство теоремы о разрыве монотонной функции легко следует из …
Правильно
Неправильно
Задание 3 из 5
3.
Количество баллов: 6
Закончите выражение!
Точкой разрыва называется такая точка в которой функция не является (непрерывной)
Если функция $latex f$ определена на отрезке $latex \left[ a,b \right]$ и монотонна, то она может иметь внутри этого отрезка, точки разрыва 1-го рода, и число точек либо конечно, либо счётно.
Пусть для определёности $latex f(x)$ не убывает в промежутке $latex X$. Возьмём любую точку $latex a\in X$, не совпадающую с левым концом $latex X$ , и рассмотрим ту часть $latex X$ , которая лежит влево от $latex a$ . При $latex x\rightarrow a-0, f(x)$ не убывает и ограничена сверху, поскольку $latex f(x)\leq f(a)$ при $latex x< a$.
В силу теоремы о пределе монотонной функции заключаем, что существует конечный, а согласно свойству функции, имеющей конечный предел , получим, что$latex f(a-0)\leq f(a)$.
Если $latex f(a-0)= f(a)$, то $latex f(x)$ непрерывна в точке $latex a$ слева. Аналогично убеждаемся, что в каждой точке$latex a\in X$, несовпадающей с правым концом$latex X,f(x)$ либо непрерывна справа, либо имеет конечный предел$latex f(a+0)> f(a)$. Ход доказательства для невозрастающей на $latex X$ функции аналогичен.
Итак, во всякой внутренней точке $latex a$ промежутка $latex X$ монотонная функция либо имеет точку разрыва первого с конечным скачком $latex f(a+0)- f(a-0)$, либо непрерывна.
Рекомендации:
Учебники :
Кудрявцев Л.Д. «Математический анализ» Том 1, Глава 1, § 5, Тема 5.1 «Точки непрерывности и точки разрыва функции» стр.84-87 ;
Фильтенгольц Г.М. «Курс дифференциального и интегрального исчисления» Том1, Глава 2, § 4 «Непрерывность и разрыв функций» стр.146-167 ;
Ильин В.А.,Позняк Э.Г. «Основы математического анализа» Часть 1, Глава 4, § 8 «Классификация точек разрыва функции» стр.143-145.
Сборники задач:
Демидович Б.П. «Сборник упражнений по математическому анализу» 13-е издание, исправленное, Отдел 1,§ 7 «Непрерывность функции» стр.77-87;
Тест расчитан на людей которые внимательно изучили разделы: «Точки разрыва монотонной функции» и «Классификация точек разрыва», и следовали всем рекомендациям
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Результаты
Правильных ответов: 0 из 5
Ваше время:
Время вышло
Вы набрали 0 из 0 баллов (0)
Рубрики
Нет рубрики0%
Математический анализ0%
Ваш результат был записан в таблицу лидеров
Загрузка
1
2
3
4
5
С ответом
С отметкой о просмотре
Задание 1 из 5
1.
Количество баллов: 8
Как классифицируются точки разрыва?
Правильно
Неправильно
Задание 2 из 5
2.
Количество баллов: 6
Доказательство теоремы о разрыве монотонной функции легко следует из …
Правильно
Неправильно
Задание 3 из 5
3.
Количество баллов: 6
Закончите выражение!
Точкой разрыва называется такая точка в которой функция не является (непрерывной)
Выясним, в чём заключается геометрический смысл непрерывности функции $latex f(x)$. Построим график функции $latex y=f(x)$ и отметим на нём точку $latex a$ и точку $latex f(a)$.
Геометрический смысл непрерывности состоит в том, что если изменение аргумента $latex=x$ незначительное, $latex=x+\delta $ , то и изменение $latex=f(x+\delta)$ будет незначительным в этой точке. Т.е., малые изменения аргумента приводят к малым изменениям значения функции в этой точке. Это можно увидеть на графике.
Рекомендации:
Учебники :
Кудрявцев Л.Д. «Математический анализ» Том 1, Глава 1, § 5 «Непрерывность функции в точке» стр.84-89;
Фильтенгольц Г.М. «Курс дифференциального и интегрального исчисления» Том 1, Глава 2, § 4 «Непрерывность и разрывы функций» стр.146-167;
Ильин В.А., Позняк Э.Г. «Основы математического анализа» Часть 1, Глава 4, § 7 «Непрерывность и предельные значения некоторых сложных функций» стр.138-143.
Сборники задач:
Демидович Б.П. «Сборник упражнений по математическому анализу» 13-е издание, исправленное, Отдел 1, § 7 «Непрерывность функции» стр.77-87;