Односторонние и бесконечные производные

Понятия односторонних и бесконечных производных вводятся аналогично понятиям односторонних и бесконечных пределов.

Определение: Если функция [latex]y = f(x)[/latex], непрерывна слева в точке [latex]x_{0}[/latex], то есть [latex]\lim\limits_{x \to x_{0} — 0} f(x) = f(x_{0})[/latex] и [latex]\exists \lim\limits_{\Delta x \to -0} \frac{\Delta y}{\Delta x}[/latex], то этот предел называют левой производной функции [latex]y[/latex] в точке [latex]x_{0}[/latex].
Левая производна кратко записывается [latex]{f_{-}}'(x_{0})[/latex].

Определение: Если функция [latex]y = f(x)[/latex], непрерывна справа в точке [latex]x_{0}[/latex], то есть [latex]\lim\limits_{x \to x_{0} + 0} f(x) = f(x_{0})[/latex] и [latex]\exists \lim\limits_{\Delta x \to +0} \frac{\Delta y}{\Delta x}[/latex], то этот предел называют правой производной функции [latex]y[/latex] в точке [latex]x_{0}[/latex].
Правая производна кратко записывается [latex]{f_{+}}'(x_{0})[/latex].

Определение: Прямая проходящая через точку [latex](x_{0}, f(x_{0}))[/latex], с угловым коэффициентом [latex]{f_{-}}'(x_{0})[/latex], называется левой касательной к графику функции [latex]y[/latex] в точке [latex](x_{0}, f(x_{0}))[/latex].

Определение: Прямая проходящая через точку [latex](x_{0}, f(x_{0}))[/latex], с угловым коэффициентом [latex]{f_{+}}'(x_{0})[/latex], называется правой касательной к графику функции [latex]y[/latex] в точке [latex](x_{0}, f(x_{0}))[/latex].

Определение: Если функция [latex]y=f(x)[/latex], непрерывна в точке [latex]x_{0}[/latex] и [latex]\exists \lim\limits_{\Delta x \to 0} = \pm \infty[/latex], тогда производная [latex]{f}'(x_{0})[/latex] называется бесконечной производной.

Замечание: Геометрическое истолкование производной как углового коэффициента касательной распространяется и на случай бесконечной производной; но здесь — касательная оказывается параллельной оси [latex]Oy[/latex]. В случаях a и b эта производная равна, соответственно, [latex]+\infty[/latex] и [latex]-\infty[/latex] (обе односторонние производные совпадают по знаку); в случаях c и d односторонние производные разнятся знаком.
svg

Тест:

Односторонние и бесконечные производные.

Тест проверки усвоения информации об односторонних и бесконечных производных.


Таблица лучших: Односторонние и бесконечные производные.

максимум из 10 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Список литературы:

  • Курс лекций по математическому анализу в двух частях Часть 1. В.И.Коляда, А.А.Кореновский стр. 110-111.
  • Лекции Зои Михайловны Лысенко.

Таблица основных интегралов

Таблица основных интегралов
Интеграл Значение
$\int dx$ $x+C$
$\int a^xdx$ $\frac{a^x}{\ln{a}}+C$
$\int e^xdx$ $e^x+C$
$\int x^adx$ $\frac{x^{a+1}}{a+1}+C$
$\int \frac{dx}{x}$ $\ln|{x}|+C$
$\int \frac{dx}{2\sqrt{x}}$ $\sqrt{x}+C$
$\int \cos xdx$ $ \sin x+C$
$\int \sin xdx$ $ -\cos x+C$
$\int \mathop{\rm sh} xdx$ $ \mathop{\rm ch} x+C$
$ \int\mathop{\rm ch} xdx$ $\mathop{\rm sh} x+C$
$\int \frac{dx}{\sin^2x}$ $ \mathop{\rm -ctg} x + C $
$\int \frac{dx}{\mathop{\rm ch}^2x}$ $ \mathop{\rm th} x+ C$
$\int \frac{dx}{\cos^2x}$ $ \mathop{\rm tg}x +C$
$\int \frac{dx}{a^2+x^2}$ $\frac{1}{a} \mathop{\rm arctg}\frac{x}{a}+C$
$\int \frac{dx}{\mathop{\rm sh}^2x}$ $\mathop{\rm -cth}x+C$
$\int \frac{dx}{\sqrt{x^2\pm a^2}}$ $\ln|x+\sqrt{x^2\pm a^2}|+C$
$\int \frac{dx}{\sqrt{a^2-x^2}}$ $\arcsin \frac{x}{a}+C$
$\int \frac{dx}{a^2-x^2}$ $\frac{1}{2a}\ln|\frac{a+x}{a-x}|+C$
$\int \frac{dx}{x^2-a^2}$ $\frac{1}{2a}\ln|\frac{x-a}{x+a}|+C$

Решите примеры:

  1. $\int (2x-3)dx$
    Спойлер

    $x^2-3x+C$

    [свернуть]
  2. $\int \cos^2xdx$ 
    Спойлер

    $\frac{1}{2}(x+\frac{1}{2}\sin2x)+C$

    [свернуть]
  3. $\int (2x-3)^2dx$
    Спойлер

    $\frac{4}{3}x^3-6x^2+9x+C$

    [свернуть]

Литература

  1. Кудрявцев Л.Д., Курс Математического Анализа. — М.: Дрофа; 2003, Т.1. Стр. 459
  2. Лысенко З.М., Конспект лекций по математическому анализу, 2012

Тест

Для решения интегралов нужно знать таблицу первообразных (таблицу интегралов) и свойства интегралов. Попробуйте проверить свои знания.


Таблица лучших: Таблица основных интегралов

максимум из 22 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Геометрический смысл производной

Геометрический смысл производной

Если функция [latex]y=f\left(x\right)[/latex] имеет производную в точке [latex]x_{0}[/latex], значит [latex]\exists \lim\limits_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = {f}’\left(x\right)[/latex], тогда существует предельное положение секущей к графику функции в точке [latex]M_{0}\left(x_{0},f\left(x_{0}\right)\right):[/latex] [latex]y-y_{0}=\frac{\Delta y}{\Delta x}\left(x-x_{0}\right) \left(x \to x_{0}\right)[/latex] это означает, что в точке [latex]M_{0} \exists l_{0}=k_{0}x + b_{0}[/latex] — касательная к графику функции, причём [latex]k_{0}={f}’\left(x_{0}\right)[/latex].

Иллюстративный материал.

Таким образом геометрический смысл производной — угловой коэффициент касательной к графику функции [latex]y = f\left(x\right)[/latex] в точке [latex]M_{0}\left(x_{0},{f}\left(x_{0}\right)\right)[/latex], а уравнение касательной [latex]l_{0} ={f}\left(x_{0}\right)+ {f}’\left(x_{0}\right)\left(x — x_{0}\right)[/latex].

 

Пример:

Найдите уравнение касательной к графику функции [latex]y=e^{2x-3}[/latex] в точке [latex]x_{0} = 5[/latex], а также угол наклона касательной в этой точке.
Решение:
Известно, что уравнение касательной в точке имеет вид [latex]l={f}\left(x_{0}\right)+{f}’\left(x_{0}\right)\left(x-x_{0}\right)[/latex], причём [latex]{f}’\left(x_{0}\right)=\mathrm{tg}\alpha[/latex], где [latex]\alpha[/latex] — угол наклона касательной.
Находим значение касательной в точке 5, получаем [latex]{f}’\left(x\right)=2e^{2x-3}[/latex], а в точке [latex]x_{0}=5: \, {f}’\left(5\right)=2e^{7} \Rightarrow[/latex][latex] l = e^{7}+2e^{7}\left(x-5\right) =[/latex][latex] -9e^{7}+2e^{7}x[/latex], [latex]\alpha = \mathrm{arctg}\left(2e^{7}\right).[/latex]

Список литературы:

  • Курс лекций по математическому анализу в двух частях Часть 1. В.И.Коляда, А.А.Кореновский стр. 109.
  • Лекции Зои Михайловны Лысенко.

 

Тест:

Тест на знание геометрического смысла производной.

Таблица лучших: Тест на знание геометрического смысла производной.

максимум из 13 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Неопределённый интеграл и его свойства

Пусть функция [latex]f[/latex] определена на некотором промежутке. Совокупность всех ее первообразных на этом промежутке называется неопределённым интегралом от функции [latex]f[/latex] и обозначается $$\int f(x)dx.$$
Символ [latex]\int[/latex] называется знаком интеграла, а [latex]f(x)[/latex] —подынтегральной функцией.

Если [latex]F(x)[/latex] — какая-либо первообразная функции [latex]f[/latex] на рассматриваемом промежутке, то пишут

[latex]\int f(x)dx=F(x)+C[/latex],

где [latex]C[/latex] — произвольная постоянная.

Нахождение неопределённого интеграла. от заданной функции называют интегрированием.

Следует отметить, что всякое равенство, в обеих частях которого стоят неопределённые интегралы, есть равенство между множествами.

Под знаком интеграла пишут не саму функцию [latex]f[/latex], а ее произведение на дифференциал. Это делается, например, для того, чтобы указать, по какой переменной ищется первообразная.

Спойлер

[latex]\int x^2z dx=\frac{x^3z}{3}+C[/latex]

[свернуть]

Спойлер

[latex]\int x^2z dz=\frac{x^2z^2}{2}+C[/latex]

[свернуть]

Спойлер

[latex]\int \frac{3}{2} \sqrt{x} dx=x^\frac{3}{2}+C=x \sqrt{x}+C[/latex], [latex]x\in[0,\infty][/latex]

[свернуть]

см. Таблица основных интегралов

Свойства неопределённого интеграла

Все рассматриваемые в этом пункте функции определены на некотором фиксированном промежутке [latex]\bigtriangleup[/latex].

Спойлер

  Если функция [latex]F[/latex] дифференцируема на некотором промежутке, то 

[latex]\int dF(x)=F(x)+C[/latex] 

 или

[latex]\int F'(x)dx=F(x)+C[/latex]. 

 

Это следует из определения первообразной.

[свернуть]

Спойлер

Если [latex]\int f(x)dx=F(x)+C[/latex] и  [latex]\int g(x)dx=G(x)+C[/latex], то  [latex]\int [f(x)+g(x)]dx=F(x)+G(x)+C[/latex], или

[latex]\int [f(x)+g(x)]dx=\int f(x)dx + \int g(x)dx[/latex]


Действительно, при наших предположениях имеет место равенство

[latex](F(x)+G(x))’=F'(x)+G'(x)=f(x)+g(x).[/latex]

[свернуть]

Спойлер

Если [latex]\int f(x)dx=F(x)+C[/latex], то для любого действительного числа [latex]\alpha\ne 0[/latex] [latex] \int[\alpha f(x)] dx=\alpha F(x)+C[/latex], или

[latex]\int[\alpha f(x)] dx=\alpha \int f(x) dx[/latex]

Это равенство очевидно следует из определения. Заметим, что при [latex]\alpha=0[/latex] оно не верно по той причине, что в левой части совокупность всех постоянных, а в правой — тождественный нуль.

[свернуть]

Спойлер

Если [latex] \int f(t)dt=F(t)+C[/latex], то для любого [latex] a\ne 0[/latex] и для любого [latex]b[/latex]

[latex] \int f(ax+b)d=\frac{1}{a} F(ax+b)+C.[/latex]

Действительно,

[latex] [\frac{1}{a} F(ax+b)]’=\frac{1}{a} F'(ax+b)a=f(ax+b)[/latex].

 

[свернуть]

Спойлер

Если [latex]f[/latex] и [latex]g[/latex] имеют первообразные на промежутке [latex]\bigtriangleup[/latex], а [latex]\alpha[/latex] и [latex]\beta[/latex] — числа, то функция [latex]\alpha f+\beta g[/latex] также имеет первообразную на [latex]\bigtriangleup[/latex], причём при [latex]\alpha^2+\beta^2>0[/latex] выполняется равенство

[latex]\int(\alpha f(x)+\beta g(x)) dx=\alpha\int f(x)dx+\beta\int g(x)dx[/latex].

 

[свернуть]

Литература.

  1. Лысенко З.М., Конспект лекций по математическому анализу, 2012
  2. Зарубин В.С., интегральное исчисление функций одного переменного — М.: Изд-во МГТУ им. Н.Э. Баумана, 1999., Стр. 16
  3. Кудрявцев Л.Д., Курс Математического Анализа. — М.: Дрофа; 2003, Т.1. Стр. 454-455
  4. Кудрявцев Л.Д., Курс Математического Анализа. — М.: Дрофа; 2003, Т.1. Стр. 456-458
  5. В. И. Коляда, А. А. Кореновский. Курс лекций по математическому анализу. К93:в 2-х ч. Ч. 1. — Одесса: Астропринт, 2009. (стр. 158-159)

 Тест.

Неопределённый интеграл и его свойства

Неопределённый интеграл и его свойства

Таблица лучших: Неопределённый интеграл и его свойства

максимум из 15 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Теорема о разности двух первообразных

Дифференцируемые в промежутке [latex]\bigtriangleup[/latex] функции [latex]F(x)[/latex] и [latex]G(x)[/latex] будут в этом промежутке первообразными одной и той же функции [latex]f(x)[/latex] тогда и только тогда, когда разность их значений для любого [latex]x\in\bigtriangleup[/latex] постоянна.

[latex]F(x)-G(x)=C=const[/latex]

Спойлер

Пусть  [latex]F(x)[/latex] — некоторая первообразная функции [latex]f(x)[/latex] в промежутке [latex]\bigtriangleup[/latex]. Следовательно, по определению [latex]F'(x)=f(x)[/latex]. Но тогда и функция [latex]G(x)=F(x)-C[/latex] ([latex]C=const[/latex]) также является промежутке первообразной функции [latex]f(x)[/latex] в этом промежутке , поскольку [latex]G'(x)=(F(x)-C)’=F'(x)=f(x)[/latex].

Пусть [latex]F(x)-G(x)=H(x)[/latex]. Найдем производную

[latex]H'(x)=(F(x)-G(x))’=F'(x)-G'(x)=f(x)-f(x)=0[/latex]

Но в силу признака постоянства дифференцируемой функции, вытекающего из теоремы Лагранжа, равенство [latex]H'(x)=0[/latex] означает, что [latex]H(x)=F(x)-G(x)=C=const[/latex].
Итак, доказана эквивалентность тому, что функция [latex]F(x)[/latex] и [latex]G(x)[/latex] могут быть первообразными лишь одной и той же функции.

[свернуть]

Литература.

  1. Зарубин В.С., Интегральное исчисление функций одного переменного. — М.: Изд-во МГТУ им. Н.Э. Баумана, 1999., Стр. 15

Тест

Теорема о разнице двух первообразных

Таблица лучших: Теорема о разнице двух первообразных

максимум из 1 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных