M1344

Задача из Научно-популярного физико-математическом журнала «Квант». Она была опубликована в февральском выпуске 1993г. под номером М1344.

Условие задачи

Том Сойер красит забор, состоящий из бесконечной последовательности прямоугольных досок разной ширины и высоты. Каждая доска на 1% уже, чем предыдущая, и выше нее, но не выше 2м. Том начинает с первой доски и затем, если доска выше предыдущей более чем на 2%, красит ее, а в противном случае — пропускает. Может ли забор быть таким, что он покрасит не менее:
а) 40%, б) 50%, в) 60% площади забора?

Решение

Пусть an — высота, bn — ширина n-ой доски; n=1,2,…
Положим [latex]q=0.99, p=\frac{1}{0.99*1.02}=\frac{1}{1.0098}[/latex].
По условию, [latex]b_{n}=b_{1}q^{n}, a_{n}\leq 2[/latex]; доска будет окрашена, если отношение площади предшествующей доски к ее площади меньше p.
Заметим, что несмотря на бесконечность количества досок, длина и площадь забора конечны: его длина равна сумме бесконечно убывающей прогрессии [latex]b_{1}(1+q+…+q^{n}+…)=\frac{b_{1}}{1-q},[/latex] а площадь не превосходит [latex]\frac{2b_{1}}{1-q},[/latex].
Мы не только ответим на вопрос задачи, но и найдем точную оценку сверху доли окрашеной площади забора. Пусть забор таков, что первые N досок окрашены, а за ними идут неокрашеные доски высотой [latex]a_{N}=a, N-[/latex] достаточно большое число (см. рисунок). Площадь неокрашеных досок равна [latex]D=a(q+q^{2}+…)=\frac{aq}{1-q}[/latex], а площадь окрашенных может быть сколь угодно близка к [latex]C=a(1+q+q^{2}+…)=\frac{a}{1-p}[/latex].
Поскольку [latex]\frac{C}{D}=\frac{1-q}{(1-p)q}=\frac{0.01*0.99*1.02}{0.0098*0.99}=\frac{1.02}{0.98}=\frac{51}{49}[/latex], этот пример показывает, что доля окрашенных досок может составлять почти 51% (и быть сколь угодно близкой к этому числу); нетрудно видеть, что эта доля может быть и любым меньшим числом.
Докажем, что она не может быть равной или большей 51%. Обозначим через S общую площадь забора, C — площадь окрашенных досок, [latex]D = S-C[/latex] — площадь неокрашенных. Будем называть неотмеченными доски, предшествующие неокрашенным.
Пусть n-ая доска отмечена, тогда (n+1)-ая окрашена, и [latex]a_{n}b_{n}\leq a_{n+1}b_{n}=\frac{a_{n+1}b_{n+1}}{q}[/latex]. Поэтому площадь всех неотмеченных досок не превосходит [latex]\frac{D}{q}[/latex]. Пусть теперь n-ая доска не отмечена; тогда (n+1)-ая окрашена, и [latex]a_{n}b_{n}\leq pa_{n+1}b_{n+1}[/latex]. Поэтому площадь всех неотмеченных досок не больше pC. Складывая площади всех — отмеченных и неотмеченных — досок, получим: [latex]S=pC+\frac{D}{q}[/latex], откуда, заменив S на C+D, получим [latex]C(1-p)\leq D(\frac{1}{q}-1)=\frac{D(1-q)}{q}[/latex], т.е. [latex]\frac{C}{D}\leq \frac{1-q}{q(1-p)}=\frac{51}{49}[/latex].
Итак, ответы на вопросы а) и б) задачи положительны, на вопрос в) — отрицателен.

А.Григорян

M1459

Игроки A и B по очереди ходят конем на шахматной доске 1994х1994. Игрок А может делать только горизонтальные ходы, т.е. такие, при которых конь перемещается на соседнюю горизонталь. Игроку В разрешены только вертикальные ходы, при которых конь перемещается на соседнюю вертикаль. Игрок А ставит коня на поле, с которого начинается игра, и делает первый ход. При этом запрещено ставить коня на то поле, на котором он уже побывал в данной игре. Проигравшим считается игрок, которому некуда ходить. Докажите, что для игрока А существует выигрышная стратегия.
Первое решение.

Так как число всех возможных позиций в игре конечно, то один из двух игроков обязательно имеет выигрышную стратегию. Если у игрока А нет выигрышной стратегии, то игрок В правильно играя, выигрывает при любом первом ходе А. Докажем, что это невозможно. Для этого организуем две игры на двух досках. На первой доске А делает произвольный первый ход с поля х на поле у. На второй доске А ставит коня на поле у и ждет ответного хода В на первой доске, после чего в точности повторяет ход В на второй доске в качестве своего хода. На второй доске A делает вертикальные ходы, а В горизонтальные. Однако если повернуть доску на 90 °, то игра происходит в точности по правилам условия задачи. Далее игрок В делает горизонтальный ход на второй доске, который повторяется игроком А на первой доске в качестве своего хода и т.д. Заметим, что игрок В не может на второй доске попасть на поле х, так как В всегда ходит на поле одного цвета, отличного от цвета х. В этой двойной игре А всегда имеет возможность сделать очередной ход, если В имеет такую возможность. Поэтому проиграет В вопреки «предположению» что у него есть выигрышная стратегия.

Второе решение.

Выигрышная стратегия для игрока A такова. Он должен вначале игры поставить коня на любую клетку, из которой выходит стрелка (см. рисунок), и сделать ход в направлении, указанном стрелкой. После хода В конь вновь окажется в клетке, из которой выходит стрелка. А вновь движется по стрелке, и так далее. Видно, что у него всегда есть возможность сделать ход, поэтому победа ему гарантирована. При этом он никогда не попадает на клетки, в которых уже побывал.

А.Перлин

М1459