Processing math: 100%

Оценка погрешности формулы Тейлора

Если остаток в формуле Тейлора latex |r_{n}(x_{0},x)|< \alpha _{0} &s=1,то формулу Тейлора для многочлена можно записать так: latex f(x)\approx f(x_{0})+\frac{f'(x_{0})}{1!}(x-x_{0})+\frac{f»(x_{0})}{2!}(x-x_{0})^{2}+…+\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n} &s=1.

В свою очередь остаточный член: latex r_{n}(x_{0},x)=\frac{f^{(n+1)}(xi )}{(n+1)!}(x-x_{0})^{n+1} &s=1 — определяет погрешность формулы.

Задание:

Записать разложение по формуле Маклорена (latexx0=0) с остатком в форме Лагранжа. Оценить абсолютную погрешность.

Пример 1

latex \sin x=x-\frac{x^{3}}{6} &s=2, причём latex |x| \leq \frac{1}{2} &s=2

Решение

Исходная формула:

latex \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-…-\frac{x^{2n+1}}{(2n+1)!} &s=2

Обобщим запись:

latex \sin x=\sum\limits_{k=0}^{n} \frac{(-1)^{k}x^{2k+1}}{(2k+1)!}+\underset{x\rightarrow 0}{o(x^{2k+1})} &s=2

Выясним промежуток для переменной:

latex x \in \left ( -\frac{1}{2};\frac{1}{2} \right ) &s=2

Запишем разложение по формуле Тейлора:
latex \sin x=x-\frac{x^{3}}{3!}+\frac{\sin^{(4)}( x )}{4!}x^{4}=x-\frac{x^{3}}{3!}+\frac{\sin( x +4\frac{\pi }{2} )}{4!}x^{4}=x-\frac{x^{3}}{3!}+\frac{\sin( x +2\pi )}{4!}x^{4} &s=2

Пользуясь правилом приведения:

latex \sin( x +2\pi )=\sin x &s=2
latex \sin x=x-\frac{x^{3}}{3!}+\frac{\sin x}{4!}x^{4} &s=2

Оценим последнее слагаемое:

latex \left | \frac{\sin x}{4!}x^{4} \right |= \frac{\left | \sin x \right |}{4!}\left | x^{4} \right |\leq \frac{\left | x^{4} \right |}{4!}\leq \frac{\frac{1}{2}}{4!}=\frac{1}{16\cdot 1\cdot 2\cdot 3\cdot 4}=\frac{1}{384} &s=2

Пример 2

latex e^{x}\simeq1+x+\frac{x^{2}}{2!}+…+\frac{x^{n}}{n!} &s=2, latex 0\leq x\leq 1 &s=2

Решение

Выпишем и оценим остаток в формуле Тейлора:

latex |r_{n} ( x_{0},x )|=\left | \frac{e^{x }}{(n+1)!}x^{n+1} \right |\leq \left | \frac{e^{x }}{(n+1)!} \right | &s=2

Учитывая промежуток для переменной, запишем и оценим:
latex \begin{Bmatrix}  x_i \in \left ( 0;1 \right )\  e\approx 2,71  \end{Bmatrix}\Rightarrow \left | \frac{e^{x_i }}{(n+1)!} \right |\leq \frac{3}{(n+1)!} &s=2

Пример 3

latex \sqrt{1+x}\approx 1+\frac{x}{2}-\frac{x^{2}}{8} &s=2, latex 0\leq x\leq 1 &s=2

Решение

Запишем разложение:

latex \sqrt{1+x}=1+\frac{\alpha }{1!}x+\frac{\alpha (\alpha -1)}{2!}x^{2}+\frac{f^{(3)}(x_i)}{3!}x^{3} &s=2

Найдём производную:

latex f'(x)=\frac{1}{2\sqrt{1+x}} &s=2
latex f^{(2)}(x)=\frac{1}{2}((1+x)^{-\frac{1}{2}})’=-\frac{1}{4}(1+x)^{-\frac{3}{2}} &s=2
latex f^{(3)}(x)=(-\frac{1}{4})(-\frac{3}{2})(1+x)^{-\frac{5}{2}}=\frac{3}{8}(1+x)^{-\frac{5}{2}} &s=2
latex f^{(3)}(x_i )=\frac{3}{8}(1+x_i )^{-\frac{5}{2}} &s=2

Оценим последнее слагаемое:

latex \left | \frac{3}{8}\cdot \frac{(1+x_i )^{-\frac{5}{2}}}{3!} x^{3}\right |=\left |\frac{(1+x_i )^{-\frac{5}{2}}}{16} x^{3} \right |\leq \frac{2^{-\frac{5}{2}}}{16}\cdot 1< \frac{1}{16} &s=2

Источники:

Остатки формулы Тейлора



Остаток формулы Тейлора (стандартное обозначение- latexrn(x0,x)) можно определить, как:
  1. Погрешность, которая возникает при замене функции latexy=f(x) многочленом latexPn(x0,x). Если выполнены условия теоремы о представлении формулы latexf в виде многочлена Тейлора, то для значений latexx из окрестности точки latexx0, для которых погрешность latexrn(x0,x) достаточно мала, многочлен latexPn(x0,x) дает приближенное представление функции.
  2. (На рисунке) Разница значений функции latexf(x) и выражающим её многочленом Тейлора в точке latexx0:latexf(x)Pn(x0,x)=rn(x0,x) (уклонение полинома latexPn от функции latexf(x)).

r(x0,x)

Существует 3 основных представления остаточного члена:

  1. В форме Лагранжа: rn(x0,x)=f(n+1)(x+θ(xx0))(n+1)!(xx0)n+1, latex0<θ<1. 
  2. В форме Коши: rn(x0,x)=f(n+1)(x0+θ1(xx0))n!(1θ1(xx0))n(xx0)n+1, latex0<θ1<1. 
  3. В форме Пеано: rn(x0,x)=o((xa)n),  при latexxa.

Примеры:

  1. Написать разложение функции latexesin(x) до latexx3 с остатком в форме Пеано.
    Спойлер
  2. [свернуть]

  • Вычислить предел, используя формулу Тейлора: limx01+2tg(x)ex+x2arctg(x)sin(x)
    Спойлер
  • Список литературы:

    1. Г.М.Фихтенгольц, Курс дифференциального и интегрального исчисления, том 1, 1962 год, стр. 246-257.
    2. Тер-Крикоров А. М. Шабунин М. И. «Курс математического анализа» 3 издание 2001 года, стр. 158-172
    3. Л. Д. Кудрявцев «Курс математического анализа 1» стр. 339-353
    4. Варятанян Г. М. Математический анализ. Часть 1(3). 2009 с. 44-46

    Формула Тейлора. Виды остаточных членов.


    Таблица лучших: Остатки формулы Тейлора

    максимум из 30 баллов
    Место Имя Записано Баллы Результат
    Таблица загружается
    Нет данных