Формула конечных приращений Лагранжа

Определение

Выпуклой областью называется открытое множество, любые две точки которого можно соединить отрезком, лежащим в области.

Теорема (Формула конечных приращений Лагранжа)

Пусть функция [latex] f(x) [/latex] дифференцируема в выпуклой области [latex] G\subset\mathbb{R}^{n} [/latex]. Тогда для любых двух точек [latex] x= \left ( x_{1},…,x_{n} \right )\in G[/latex], [latex]y= \left ( y_{1},…,y_{n} \right )\in G [/latex] найдется такое число [latex] \theta \in \left(0,1 \right ) [/latex], что
$$f(y)-f(x)= \sum _{i=1}^{n}\frac{\partial f}{\partial x_{i}}\left (x+\theta \left ( y-x \right )\left ( y_{i}-x_{i} \right ) \right ).\ \ \ \ \ \ \ \ \ \  (1)$$

Формула [latex](1)[/latex] называется формулой конечных приращений Лагранжа.

Доказательство

Пусть точки [latex] x,y \in G [/latex]. Так как область [latex]G[/latex] выпукла, то отрезок, соединяющий точки [latex]x[/latex] и [latex]y[/latex], лежит в области [latex]G[/latex]. Поэтому определена функция одной переменной:

[latex] \varphi (t) = f(x_{1}+t(y_{1}-x_{1}),…,x_{n}+t(y_{n}-x_{n})), 0\leqslant t\leqslant 1 [/latex]. [latex](2)[/latex]

По теореме о производной сложной функции [latex]\varphi (t)[/latex] — дифференцирума на отрезке [latex][0,1][/latex] и очевидно, что [latex] \varphi (0) = f(x)[/latex], [latex]\varphi (1) = f(y) [/latex]. По правилу нахождения производной сложной функции имеем:

$$\varphi{}’ (t)=\sum_{i=1}^{n}\frac{\partial f}{\partial x}\left ( x_{1}+t(y_{1}-x_{1}),…,x_{n}+t(y_{n}-x_{n}) \right )\left ( y_{i}-x_{i} \right ). \ \ \ \ \ \ (3)$$

Применим к функции [latex] \varphi(t) [/latex] формулу приращений Лагранжа для функции одной переменной. Получаем, что найдется число [latex] \theta \in \left(0,1 \right ) [/latex] такое, что [latex] \varphi(1) — \varphi(0) = \varphi{}’ (\theta ) [/latex]. Используя формулы [latex](2)[/latex] и [latex](3)[/latex], теперь легко получаем формулу [latex](1)[/latex].[latex]\square [/latex]

[spoilergroup]

Спойлер

Доказать, что [latex]\left | \arctan x_{2} -\arctan x_{1} \right |\leqslant \left | x_{2}-x_{1} \right |[/latex], [latex]x_{1}\in \mathbb{R}[/latex], [latex]x_{2}\in \mathbb{R}[/latex]. (*)
По теореме Лагранжа для функции [latex]\arctan x[/latex] на отрезке с концами [latex]x_{1}[/latex] и [latex]x_{2}[/latex] находим
$$\arctan x_{2} — \arctan x_{1}=\frac{1}{1+\xi ^{2}}(x_{2}-x_{1}),$$
откуда получаем [latex]\left | \arctan x_{2}-\arctan x_{1} \right |=\frac{\left | x_{2}-x_{1} \right |}{1+\xi ^{2}}\leqslant \left | x_{2}-x_{1} \right |[/latex], так как [latex]0<\frac{1}{1+\xi^{2}}\leqslant 1[/latex].
Полагая в соотношении (*) [latex]x_{2}=x[/latex], [latex]x_{1}=0[/latex], получаем
[latex]\left | \arctan x \right |\leqslant \left | x \right |[/latex], [latex]x\in \mathbb{R}[/latex],
и, в часности,
[latex]0\leqslant \arctan x\leqslant x[/latex], [latex]x\geqslant 0[/latex].

[свернуть]

[/spoilergroup]

Литература

Тест

Формула конечных приращений Лагранжа

Теста на знание формулы конечных приращений Лагранжа


Таблица лучших: Формула конечных приращений Лагранжа

максимум из 10 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Формула конечных приращений Лагранжа

Теорема (Формула конечных приращений Лагранжа)

Если функция [latex] f\in C[a,b] [/latex] и дифференцируема на интервале [latex](a,b)[/latex], то [latex] \exists \theta \in (0,1)[/latex], [latex]f(a)-f(b)=f{}'(x_{0} )(b-a)[/latex], где [latex] x_{0}=a+ \theta(b-a)[/latex].

Геометрический смысл (для случая одной переменной): на дуге графика данной функции, соединяющей точки [latex](a,f(a))[/latex] и [latex](b,f(b))[/latex], найдется точка [latex](c,f(c))[/latex], (и, возможно, не одна), в которой касательная к графику функции параллельна хорде, соединяющей концы дуги.

RealyfinalVersion — копия

Доказательство

Рассмотрим функцию [latex]\varphi (x)=f(x)+\lambda x[/latex] где число [latex]\lambda[/latex] выберем таким, чтобы выполнялось условие [latex]\varphi (a)=\varphi (b)[/latex], т.е. [latex]f(a)+\lambda a=f(b)+\lambda b[/latex]. Отсюда находим: [latex]\lambda =-\frac{f(b)-f(a)}{b-a}[/latex].

Так как функция [latex]\varphi (x)[/latex] непрерывна на отрезке [latex][a,b][/latex], дифференцируется на интервале [latex](a,b)[/latex] и принимает равные значения на концах этого интервала то, по теореме Ролля, существует точка [latex]x_{0}\in (a,b)[/latex] такая, что [latex]\varphi{}'(x_{0})=f{}'(x_{0})+\lambda =0[/latex]. Отсюда получаем, что [latex]f{}'(x_{0})=\frac{f(b)-f(a)}{b-a} [/latex], или [latex]f(b)-f(a)=f{}'(x_{0})(b-a). [/latex] [latex]\square [/latex]

[spoilergroup]

Спойлер

Доказать, что [latex]\ln (1+x)\leqslant x[/latex], [latex]x>0[/latex] (*),
[latex]\left | \arctan x_{2} -\arctan x_{1} \right |\leqslant \left | x_{2}-x_{1} \right |[/latex], [latex]x_{1}\in \mathbb{R}[/latex], [latex]x_{2}\in \mathbb{R}[/latex]. (**)
а) Применяя теорему Лагранжа к функции [latex]f(x)=\ln (1+x)[/latex] на отрезке [latex][0,x][/latex], где [latex]x>0[/latex], получаем [latex]\ln(1+x)=\frac{1}{1+\xi }x[/latex], откуда следует неравенство (*), так как [latex]0<\xi<x[/latex].
б) По теореме Лагранжа для функции [latex]\arctan x[/latex] на отрезке с концами [latex]x_{1}[/latex] и [latex]x_{2}[/latex] находим
$$\arctan x_{2} — \arctan x_{1}=\frac{1}{1+\xi ^{2}}(x_{2}-x_{1}),$$
откуда получаем [latex]\left | \arctan x_{2}-\arctan x_{1} \right |=\frac{\left | x_{2}-x_{1} \right |}{1+\xi ^{2}}\leqslant \left | x_{2}-x_{1} \right |[/latex], так как [latex]0<\frac{1}{1+\xi^{2}}\leqslant 1[/latex].
Полагая в соотношении (**) [latex]x_{2}=x[/latex], [latex]x_{1}=0[/latex], получаем
[latex]\left | \arctan x \right |\leqslant \left | x \right |[/latex], [latex]x\in \mathbb{R}[/latex],
и, в часности,
[latex]0\leqslant \arctan x\leqslant x[/latex], [latex]x\geqslant 0[/latex].

[свернуть]

[/spoilergroup]

Использованная литература

Рекомендованная литература

Тест

Формула конечных приращений Лагранжа

Теста на знание формулы конечных приращений Лагранжа

Таблица лучших: Формула конечных приращений Лагранжа

максимум из 10 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Остатки формулы Тейлора



Остаток формулы Тейлора (стандартное обозначение- $latex r_{n} (x_{0},x) $) можно определить, как:
  1. Погрешность, которая возникает при замене функции $latex y=f(x) $ многочленом $latex P_{n}(x_{0},x) .$ Если выполнены условия теоремы о представлении формулы $latex f$ в виде многочлена Тейлора, то для значений $latex x$ из окрестности точки $latex x_{0},$ для которых погрешность $latex r_{n}(x_{0},x) $ достаточно мала, многочлен $latex P_{n}(x_{0},x) $ дает приближенное представление функции.
  2. (На рисунке) Разница значений функции $latex f(x) $ и выражающим её многочленом Тейлора в точке $latex x_{0} :$$latex f(x)-P_{n}(x_{0},x)=r_{n}(x_{0},x) $ (уклонение полинома $latex P_{n} $ от функции $latex f(x) $).

r(x0,x)

Существует 3 основных представления остаточного члена:

  1. В форме Лагранжа: $$ \large r_{n} (x_{0},x)=\frac{f^{(n+1)}(x+\theta(x-x_{0}))}{(n+1)!}(x-x_{0})^{n+1} , \ $$$latex 0< \theta < 1 .$$$\ $$
  2. В форме Коши: $$\large r_{n} (x_{0},x) =\frac{f^{(n+1)}(x_{0}+\theta_{1}(x-x_{0}))}{n!}(1-\theta_{1}(x-x_{0}))^{n}(x-x_{0})^{n+1} , \ $$$latex 0< \theta_{1} < 1 .$$$\ $$
  3. В форме Пеано: $$ \large r_{n} (x_{0},x) =o((x-a)^{n}) , \ $$ при $latex x\rightarrow a .$

Примеры:

  1. Написать разложение функции $latex e^{\sin (x)} $ до $latex x^{3} $ с остатком в форме Пеано.
    Спойлер

    $$ e^{\sin (x)}=1+\sin (x)+\frac{1}{2} \sin ^{2}(x)+\frac{1}{6}\sin ^{3}(x)+o(\sin ^{3}(x)) $$ Ввиду эквивалентности бесконечно малых $latex x $ и $latex \sin (x) $ это все равно, что $latex o(x^{3}) ,$ то есть:
    $latex e^{\sin (x)}=1+\sin (x)+ $$latex \frac{1}{2} \sin ^{2}(x)+ $$latex \frac{1}{6} \sin ^{3}(x)+o(x^{3}) \sin(x)= $$latex x-\frac{1}{6}x^{3}+o(x^{4}) \Rightarrow $$latex e^{sin(x)}=1+(x-\frac{1}{6} x^{3} )+ $$latex \frac{1}{2}x^{2}+\frac{1}{6}x^{3}+o(x^{3}) $
    Член с $latex x^{3} $ аннулируется и, окончательно, имеем: $$ e^{ \sin (x)}=1+x+\frac{1}{2}x^{2}+o(x^{3}) $$ $$\ $$

  2. [свернуть]

  • Вычислить предел, используя формулу Тейлора: $$ \lim\limits_{x\rightarrow 0}\frac{\sqrt{1+2\cdot \mathrm{tg} (x)}-e^x+x^2}{\mathrm{arctg} (x)-\sin (x)} $$
    Спойлер

    Разложим числитель по формуле Тейлора: $$\mathrm{tg} (x)=x+\frac{x^3}{3}+o(x^3),\,\, x\rightarrow 0; \ $$ $$ 2 \cdot \mathrm{tg} (x)=2\cdot x+ \frac {2\cdot x^{3}}{3}+o(x^{3}),\,\, x\rightarrow 0;$$ $$\sqrt {1+t}=(1+t)^{\frac {1}{2}}=1+\frac {1}{2}t-\frac {1}{8}t^2+\frac {1}{16}t^{3}+o(t^{3}),\,\, t\rightarrow 0;$$ Таким образом: $latex \sqrt{1+2\cdot \mathrm{tg} (x)}= $$latex 1+\frac{1}{2}2 \cdot \mathrm{tg} (x)- $$latex \frac{1}{8}(2 \mathrm{tg} (x))^2+$$latex \frac{1}{16}(2 \cdot \mathrm{tg} (x))^3+o(\mathrm{tg} ^{3} (x))= $$latex 1+\mathrm{tg} (x)-\frac{1}{2} \mathrm{tg} ^{2} x+$$latex \frac{1}{2} \mathrm{tg} ^3 (x)+o(\mathrm{tg} ^{3} (x))= $$latex 1+x+\frac{x^3}{3}-\frac{1}{2}x^2+\frac{x^3}{2}+o(x^3)= $$latex 1+x-\frac{1}{2}x^2+\frac{5}{6}x^3+o(x^3) . \ $
    Учитывая, что $latex e^x=1+x+\frac{x^2}{2}+\frac{x^3}{6}+o(x^3) ,$ находим, по формуле Тейлора ($latex x_{0}=0$) числитель дроби $latex \sqrt{1+2\cdot \mathrm{tg} (x)}-e^x+x^2= $$latex 1+x-\frac{1}{2}x^2+$$latex \frac{5}{6}x^3-1-x-$$latex \frac{x^2}{2}-$$latex \frac{x^3}{6}+$$latex x^2+o(x^3)= $$latex \frac{2}{3}x^3+o(x^3),\, x\rightarrow 0 .$
    Далее раскладываем знаменатель: $latex \sin x= x-$$latex \frac{x^3}{6}+o(x^3);\ $$latex \arcsin x=x+$$latex \frac{x^3}{6}+o(x^3). $ Отсюда $latex \arcsin(x)- \sin (x) = $$latex \frac {x ^{3}}{3} + o (x ^{3}) $ Таким образом, дробь представляется в виде: $$\frac{\frac{2}{3}x^3+o(x^3)}{\frac{1}{3}x^3+o(x^3)}$$ Следовательно:
    $$\lim\limits_{x\rightarrow 0} \frac {\sqrt {1+2\cdot \mathrm{tg} (x)}-e^{x}+x^{2}}{ \mathrm{arctg} (x)-\sin (x)}=\lim\limits_{x\rightarrow 0} \frac{\frac{2}{3}x^3+o(x^3)}{\frac{1}{3}x^3+o(x^3)} = 2 $$

    [свернуть]
  • Список литературы:

    1. Г.М.Фихтенгольц, Курс дифференциального и интегрального исчисления, том 1, 1962 год, стр. 246-257.
    2. Тер-Крикоров А. М. Шабунин М. И. «Курс математического анализа» 3 издание 2001 года, стр. 158-172
    3. Л. Д. Кудрявцев «Курс математического анализа 1» стр. 339-353
    4. Варятанян Г. М. Математический анализ. Часть 1(3). 2009 с. 44-46

    Формула Тейлора. Виды остаточных членов.


    Таблица лучших: Остатки формулы Тейлора

    максимум из 30 баллов
    Место Имя Записано Баллы Результат
    Таблица загружается
    Нет данных