Processing math: 100%

Симметрическая группа

Множество всех подстановок порядка [latex]n[/latex] с операцией умножения подстановок образуют группу [latex]S_n[/latex]. Единичным элементом группы является подстановка [latex]e=(12n12n)

[/latex], обратной подстановкой для [latex]\pi=(i1i2inj1j2jn)
[/latex] является [latex]\pi^{-1}=(j1j2jni1i2in)
[/latex]. Порядок этой группы равен [latex]n![/latex].
Группа [latex]S_n[/latex] называется симметрической группой порядка [latex]n[/latex] .
При [latex]n>2[/latex] группа [latex]S_n[/latex] не коммутативна.

Пример

Группа [latex]S_3[/latex] состоит из шести элементов: [latex]e=(123123)

,(123132)
,(123213)
,(123231)
,(123312)
,(123321)
.[/latex] Эта группа не коммутативна: произведение [latex](123123)
(123132)
[/latex] равно [latex](123213)
[/latex], что отлично от [latex](123132)
(123231)
=(123321)
[/latex].

Задача

Доказать, что порядок группы [latex]S_n[/latex] равен [latex]n![/latex].

Спойлер

Источники

Структуры и подструктуры

Тест на тему «Простейшие задачи на определение структур группы, кольца, поля. Подструктуры.Циклическая группа. Симметрическая группа.». Прочтите все четыре статьи, прежде чем проходить тест.

Порядок группы

Порядок группы

Пусть [latex]\left(G,*\right)[/latex] — группа, если [latex]G[/latex] — конечное множество, то порядком группы называется число элементов [latex]G[/latex] и обозначается [latex]\left|G \right|[/latex] или [latex]\mathrm{card}[/latex] [latex]G[/latex]. Если [latex]G[/latex] — бесконечно, то порядок бесконечен.

Порядок элемента группы

Пусть [latex]\left(G,*\right)[/latex] — произвольная группа и [latex]a[/latex] — некоторый ее элемент. Имеются две возможности:

  1. Все степени элемента [latex]a[/latex] различны, то есть [latex]m\neq n[/latex] [latex]\Rightarrow[/latex] [latex]a^{m} \neq a^{n}[/latex]. В этом случае говорят, что элемент [latex]a\in G[/latex] имеет бесконечный порядок.
  2. Имеются совпадения [latex]a^{m}=a^{n}[/latex] при [latex]m\neq n[/latex]. Если, например, [latex]m>n[/latex], то [latex]a^{m-n}=e[/latex], то есть существуют положительные степени элемента [latex]a\in G[/latex], равные единичному элементу. Пусть [latex]q\ -[/latex] наименьший положительный показатель, для которого [latex]a^{q}=e.[/latex] Тогда говорят, что [latex]a[/latex] — элемент конечного порядка [latex]q[/latex].

В конечной группе [latex]\left(G,*\right)[/latex] все элементы будут конечного порядка.

Порядок группы с циклическими подгруппами

Пусть [latex]\left(G,*\right)[/latex] — данная группа. Любой ее элемент порождает некоторую циклическую подгруппу. Если [latex]\left(G,*\right)[/latex] — конечная группа, то и все ее циклические подгруппы конечны. Порядок группы [latex]\left(G,*\right)[/latex] делится на порядок ее любой подгруппы, в частности, на порядок любой циклической подгруппы. Этот порядок равен порядку образующего элемента. Таким образом, верна следующая теорема.

Теорема

Порядок конечной группы делится на порядок любого ее элемента.

Спойлер

Примеры:

  1. Пусть [latex]\left(G,+ \right)[/latex] — группа, где [latex]G=\left\{1,2,3,4 \right\}[/latex]. Найти порядок группы.
    Ответ: [latex]\left|G \right|=4[/latex]
  2. Пусть [latex]\left(G,* \right)[/latex] — группа, где [latex]G=\mathbb N[/latex]. Найти порядок группы.
    Ответ: [latex]\left|G \right|=\infty[/latex]

Литература:

  1. Белозеров Г.С. Конспект лекций
  2. Фаддеев Д.К. Лекции по алгебре. М.:Наука, 1984, стр. 247
  3. Кострикин А.И. Введение в алгебру. Часть I. Основы алгебры. М.:Физико-математическая литература, 2000, стр. 142-143

Порядок группы

Тест для проверки знаний по теме «Порядок группы»

Таблица лучших: Порядок группы

максимум из 4 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных