Задача из журнала «Квант» (1982 год, 12 выпуск)
Условие
Дан неравнобедренный треугольник $A_{1}A_{2}A_{3}$. Пусть $a_{i}$ – его сторона, лежащая против вершины $A_{i}$ $(i = 1, 2, 3)$, $M_{i}$ – середина стороны $a_{i}$, $T_{i}$ – точка касания стороны с окружностью, вписанной в данный треугольник, $S_{i}$ – точка, симметричная $T_{i}$ относительно биссектрисы угла $A_{i}$ треугольника.
Докажите, что прямые $M_{1}S_{1}$, $M_{2}S_{2}$ и $M_{3}S_{3}$ имеют общую точку.
Доказательство
Стороны треугольника $M_{1}M_{2}M_{3}$ соответственно параллельны сторонам треугольника $A_{1}A_{2}A_{3}$. Мы докажем, что и стороны треугольника $S_{1}S_{2}S_{3}$ параллельны сторонам $A_{1}A_{2}A_{3}$. Отсюда вытекает, что $\triangle$$S_{1}S_{2}S_{3}$ гомотетичен $\triangle$$M_{1}M_{2}M_{3}$ или переводится в него параллельным переносом. Второй случай отпадает, ибо окружность, описанная около треугольника $M_{1}M_{2}M_{3}$, больше описанной окружности треугольника $S_{1}S_{2}S_{3}$. Следовательно, прямые, соединяющие соответственные вершины треугольников $S_{1}S_{2}S_{3}$ и $M_{1}M_{2}M_{3}$, должны пересечься в одной точке — центре гомотетии.
Покажем, например, что прямые $S_{1}S_{2}$ и $A_{1}A_{2}$ параллельны (см. рисунок). При симметрии относительно биссектрисы угла $A_{1}$ точка $S_{1}$ перейдет в $T_{1}$, а $T_{3}$ — в $T_{2}$, поэтому дуги $S_{1}T_{3}$ и $T_{1}T_{2}$ вписанной окружности треугольника $A_{1}A_{2}A_{3}$ равны. Аналогично, при симметрии относительно биссектрисы угла $A_{2}$ дуга $T_{1}T_{2}$ перейдет в дугу $T_{3}S_{2}$. Следовательно, дуги $S_{1}T_{3}$ и $T_{3}S_{2}$ равны, и поэтому точки $S_{1}$ и $S_{2}$ находятся на одинаковом расстоянии от прямой $A_{1}A_{2}$, то есть $S_{1}S_{2}$$\parallel$$A_{1}A_{2}$. Аналогично доказывается, что и две другие стороны треугольника $S_{1}S_{2}S_{3}$ параллельны соответствующим сторонам треугольника $A_{1}A_{2}A_{3}$.