М1839. О тригонометрических неравенствах

Задача из журнала «Квант» (2002 год, 5 выпуск)

Условие

Пусть $0 < x < \frac{\pi}{4}$. Докажите, что $$\left(\cos x\right)^{\cos^2 x} > \left(\sin x\right)^{\sin^2 x},$$ а также $$\left(\cos x\right)^{\cos^4 x} < \left(\sin x\right)^{\sin^4 x}.$$

Доказательство

На первый взгляд кажется, что одно из неравенств противоречит другому, но это не так.

Рассмотрим $$f(y) = \cos^y x − \sin^y x ,$$ где $ 0 < x < \frac{\pi}{4}$, $y \geqslant 0$. Имеем: $f(0) = 0$, $f(y) > 0$ при $y > 0$, $f(y) \to 0$ при $y \to \infty$. Далее, $$f'(y) = \cos^y x \ln \cos x − \sin^y x \ln \sin x =\\= \cos^y x\left(\ln \cos x − \mathrm {tg}^y\,x \ln \sin x\right),$$ поэтому $f'(y)$ имеет единственный корень при $y > 0$, так как функция $g(y) = \mathrm {tg}^y\,x$ монотонна. Из равенства $$f(2) = f(2)\left(\cos^2 x + \sin^2 x\right) = f(4)$$ следует, что $f'(2) > 0$, $f'(4) < 0$.

Перепишем первое неравенство: $$\cos^2 x \ln \cos x > \sin^2 x \ln \sin x ,$$ что эквивалентно первому неравенству задачи. Аналогично, $f'(4) < 0$, или $$\cos^4 x \ln \cos x < \sin^4 x \ln \sin x ,$$ что эквивалентно второму неравенству задачи.

В. Сендеров

М778. Общая точка

Задача из журнала «Квант» (1982 год, 12 выпуск)

Условие

Дан неравнобедренный треугольник $A_{1}A_{2}A_{3}$. Пусть $a_{i}$ – его сторона, лежащая против вершины $A_{i}$ $(i = 1, 2, 3)$, $M_{i}$ – середина стороны $a_{i}$, $T_{i}$ – точка касания стороны с окружностью, вписанной в данный треугольник, $S_{i}$ – точка, симметричная $T_{i}$ относительно биссектрисы угла $A_{i}$ треугольника.

Докажите, что прямые $M_{1}S_{1}$, $M_{2}S_{2}$ и $M_{3}S_{3}$ имеют общую точку.

Доказательство

Стороны треугольника $M_{1}M_{2}M_{3}$ соответственно параллельны сторонам треугольника $A_{1}A_{2}A_{3}$. Мы докажем, что и стороны треугольника $S_{1}S_{2}S_{3}$ параллельны сторонам $A_{1}A_{2}A_{3}$. Отсюда вытекает, что $\triangle$$S_{1}S_{2}S_{3}$ гомотетичен $\triangle$$M_{1}M_{2}M_{3}$ или переводится в него параллельным переносом. Второй случай отпадает, ибо окружность, описанная около треугольника $M_{1}M_{2}M_{3}$, больше описанной окружности треугольника $S_{1}S_{2}S_{3}$. Следовательно, прямые, соединяющие соответственные вершины треугольников $S_{1}S_{2}S_{3}$ и $M_{1}M_{2}M_{3}$, должны пересечься в одной точке — центре гомотетии.

Покажем, например, что прямые $S_{1}S_{2}$ и $A_{1}A_{2}$ параллельны (см. рисунок). При симметрии относительно биссектрисы угла $A_{1}$ точка $S_{1}$ перейдет в $T_{1}$, а $T_{3}$ — в $T_{2}$,Рисунок задачи М778 поэтому дуги $S_{1}T_{3}$ и $T_{1}T_{2}$ вписанной окружности треугольника $A_{1}A_{2}A_{3}$ равны. Аналогично, при симметрии относительно биссектрисы угла $A_{2}$ дуга $T_{1}T_{2}$ перейдет в дугу $T_{3}S_{2}$. Следовательно, дуги $S_{1}T_{3}$ и $T_{3}S_{2}$ равны, и поэтому точки $S_{1}$ и $S_{2}$ находятся на одинаковом расстоянии от прямой $A_{1}A_{2}$, то есть $S_{1}S_{2}$$\parallel$$A_{1}A_{2}$. Аналогично доказывается, что и две другие стороны треугольника $S_{1}S_{2}S_{3}$ параллельны соответствующим сторонам треугольника $A_{1}A_{2}A_{3}$.

А. П. Савин