Processing math: 100%

РЕШЕНИЕ МАТРИЧНЫХ УРАВНЕНИЙ

Решение матричных уравнений

Матричные уравнения бывают трех типов.

  • 1. AX=B
  • 2. XA=B
  • 3. CXA=B
  • Пример 1. Чтобы решить уравнение первого типа нужно обе части уравнения умножить на обратную к матрице A слева.
    (1234)X= (3559), det(1234)=2
    A11=(1)1+14=4
    A12=(1)1+23=3
    A21=(1)2+12=2
    A22=(1)2+21=1
    (4321), полученную матрицу транспонируем и умножим на det1(1234)=1/2. Обратная матрица к (1234) равна (213/21/2).
    X=(213/21/2) (3559), X=(1123). Сделаем проверку (1234)(1123)=(3559). Уравнение решили правильно.
    Пример 2. Чтобы решить уравнение второго типа нужно обе части уравнения умножить на обратную к матрице A справа.
    X(3254)= (1256). Матрица обратная к (3254) равна (215/23/2). X=(1256)(215/23/2), X=(3254).
    Пример 3. Чтобы решить уравнение третьего типа нужно обе части уравнения умножить на обратную к матрице A справа и на обратную матрице C слева.
    (3152)X(5678)= (1416910). Обратная матрица к (3152) равна (2153), обратная матрица к (5678) равна (437/25/2). X=(2153)(1416910)(437/25/2)=(1234).
    Проверка (3152)(1234)(5678)= (1416910).
    Пример 4. Случай когда обратная матрица не существует.
    X(3648)= (24918).
    Матрицу X запишем как (x1x2x3x4), (3x1+4x26x1+8x23x3+4x46x3+8x4)=(24918).

    {3x1+4x2=26x1+8x2=43x3+4x4=96x3+8x4=18


    Эта система эквивалентна
    {3x1+4x2=23x3+4x4=9

    Решив данную систему получим общей вид решения X=(x1(23x1)/4x3(94x1)/3)
    Литература

  • 1. Белозёров Г. С. Конспект по алгебре и геометрии
  • 2. Линейная алгебра. Воеводин. В. В. М.: Наука. Главная редакция физико-математической литературы, 1980 год, стр. 211-213.
  • Сборник задач по линейной алгебре. Проскуряков. И. В. М. 1961 год, стр. 118-119.
  • Решение матричных уравнений

    Обращение матриц. Решение матричных уравнений

    Таблица лучших: Решение матричных уравнений

    максимум из 2 баллов
    Место Имя Записано Баллы Результат
    Таблица загружается
    Нет данных

    M1498. Решение одной системы n-уравнений второй степени


    Условие

    Решите при каждом n>1 систему уравнений
    {α=π(2m+1)2(n+1)x1xn=2,x2(xnx1)=1,,xn1(xnxn2)=1,xn(xnxn1)=1

    Решение

    При нескольких первых значениях n(n=2,3,4,5) систему удается решить «в лоб»: положить xn=z, можно вырвзить через z последовательно x1,x2,,, и наконец из последнего уравнения системы получить уравнение вида Pn(z)=0, где Pn — многочлен. Например, при n=2 получим z=±3, при n=3z=±2±2, при n=4 в ответе появляется корень из 5. Это может привести на мысль сделать тригонометрическую заменну переменной (и даже — какую именно). Положим xn=2cosα. Тогда x1=1cosα,x2=12cosα1cosα=cosαcos2α: и далее по индукции — предположив, что xk=cos(k1)αcoskα, найдем xk+1=12cosαcos(k1)αcoskα=coskαcos(k+1)α, поскольку 2cosαcosβ=cos(β+α)+cos(βα). Последнее уравнение системы даст: xn=cos(n1)αcosnα=2cosα и преобразуется к виду cos(n+1)α=0. Откуда α=π(2m+1)2(n+1); при этом

    xk=cos(k1)αcoskα(k=1,2,,n).()

    Разные значения cosα получаются при 0<π(2m+1)2(n+1)<π, т.е. при m=0,1,,n. Однако не все они годятся: чтобы ни одно из чисел coskα(k=1,,n) не обращалось в 0, необходимо и достаточно, чтобы 2m+1 и n+1 не имели общего делителя, большего 1 (если 2m+1=dp, n+1=dp, d>1, то p — нечетно и cosqα=cosπdpq2dq=cospπ2=0; легко доказать и обратное).

    Итак, к строчке (), дающей ответ надо добавить условие: НОД (2m+1,n+1)=1, 0mn.

    Нужно еще показать, что найдены все решения. Из сказанного выше следует, что нет других решений, для которых |xn|2. Вот один из способов доказать, что решения с |xn|>2 быть не может.

    Обозначим coshα=eα+eα2, где e — основание натуральных логарифмов — что, впрочем, здесь не важно: нам понадобиться лишь, что e>0 и что, как и для cosα, 2coshαcoshβ=cosh(α+β)+cosh(αβ)

    (Тем, кто знаком с комплексными числами, напомним, что cosα=eiα+eiα2, так что «гиперболический косинус» coshα — это просто cos(iα).) Рассуждая так же, как и выше, — положив xn=±2coshα, — найдем, что cosh(n+1)α=0. Но функция cosh вообще не обращается в 0 (coshα1 при любом α), так что решений с |xn|>2 нет.

    К задаче M1498 Рассказ об этой задаче был бы неполон без объяснения, откуда возникла такая странная на первый взгляд система уравнений. Ее источник — геометрия. Построим равнобедренный треугольник ABC с боковыми сторонами AB=BC=1 и углами при основании α=π2(n+1). Пусть K — середина основания. Отметим на отрезке KC точки M1,,Mn1 такие, что Mk1BMk=α (здесь и ниже k=1,2,,n; M0=K, [/latex] M_{k}=C[/latex], см. рисунок).

    Треугольники ABMk и CMk1B подобны (их углы: α, (k+n)α, (n+1k)α), так что AMkMk1C=ABBC. Положим xk=AMk, в частности, xn=AC тогда Mk1C=xnxk1, поэтому xk(xnxk1)=1 и (поскольку AM0=x0/2) x1xn=2. Легко видеть, что (см. рисунок) AMk=cos(k1)α/coskα, в частности, AM1=1/cosα, AC=2cosα. Таким образом, мы получим иллюстрацию «основного» решения системы с m=1.

    Заметим, что наш рисунок — фрагмент правильного 2(n+1)-угольника со стороной 1; xk — это кусочки, высекаемые на одной диагонали AC диагоналями, выходящими из вершины B. Решения системы, отвечающие значемиям m>1, можно интерпретировать аналогичным образом как кусочки диагоналей ( или их продолжений ) правильной 2(n+1)-угольной звезды.

    Эта геометрическая интерпретация позволяет выяснить, при каких n решения системы выражаются в квадратных радикалах ( через рациональные числа ): при тех, для которых можно построить правильный (n+1)-угольник ( а значит, и 2(n+1)-угольник ) циркулем и линейкой. Это — в точности те n, для которых число решений системы — степень двойки. Вот несколько первых значений n:2,3,4,5,7,9,11,14,15,16,19,23, ( см. статью А.Кириллова «О правильных многоугольниках, функции Эйлера и числах Ферма», «Квант» №6 за 1994 год).

    И.Васильев