Функция [latex]y=C,[/latex] где [latex]C[/latex] — постоянно непрерывна на [latex]R,[/latex] так как [latex]\Delta y=0[/latex]при любом[latex]x.[/latex] Функция [latex]y=x[/latex]непрерывна на [latex]R,[/latex] так как [latex]\Delta y=\Delta x \to 0[/latex]при[latex]\Delta x \to 0.[/latex] Поэтому функция[latex]y=a_{k}x^k,[/latex] где [latex]k\in\mathbb{N},[/latex] непрерывна на [latex]R[/latex] как произведение непрерывных функций. Так как многочлен [latex]P_{n}(x)[/latex]есть сумма непрерывных функций вида [latex]a_{k}x^k\ \ \ \left ( k=\overline{0,n} \right ),[/latex] то он непрерывен на[latex]R.[/latex]
[свернуть]
Рациональная функция, т. е. функция вида [latex]f(x)=\frac{P_{n}(x)}{Q_{m}(x)},[/latex] где [latex]P_{n}(x),Q_{m}(x)[/latex] — многочлены степени [latex]n[/latex] и [latex]m[/latex] соответственно, непрерывна во всех точках, которые не являются нулями многочлена [latex]Q_{m}(x).[/latex]
Спойлер
В самом деле, если [latex]Q_{m}(x)\neq 0,[/latex] то из непрерывности многочленов [latex]P_{n}[/latex] и [latex]Q_{m}[/latex] следует непрерывность функции [latex]f[/latex] в точке [latex]x_{0}.[/latex]
[свернуть]
Утверждение 2
Если [latex] x \in \left ( — \frac{\pi}{2} , \frac{\pi}{2} \right ) [/latex] и [latex] x\neq 0,[/latex] то [latex] \cos{x} <\frac{\sin\ x}{x} < 1 \ \ \ \ \left ( 1 \right ).[/latex]
Спойлер
Рассмотрим в координатной плоскости круг единичного радиуса
с центром в точке [latex] O [/latex] (рис. 12.1). Пусть [latex] \angle AOB=x,[/latex] где [latex]0<x<\frac{\pi}{2} [/latex].
Пусть [latex] C [/latex] — проекция точки [latex] B[/latex] на ось [latex]Ox[/latex], [latex] D [/latex] луча [latex] OB [/latex] и прямой, проведенной через точку [latex] A [/latex] перпендикулярно оси [latex] Ox.[/latex] Тогда [latex]BC=sin x, DA=tgx.[/latex]
Пусть [latex]S_{1}, S_{2}, S_{3}[/latex] — площади треугольника [latex]AOB,[/latex] сектора[latex]AOB[/latex] и треугольника [latex]AOD[/latex] соответственно. Тогда
и тогда функция [latex]y=\log_{a}{x}[/latex] — монотонна и непрерывна(как обратная)
Утверждение 7
Функции, заданные формулами
[latex]sh\ x =\frac{e^x-e^{-x}}{2},\ \ \ \ ch\ x=\frac{e^x+e^{-x}}{2}[/latex]
называют соответственно гиперболическим синусом и гиперболическим косинусом.
Эти функции определены и непрерывны на [latex]\mathbb{R}[/latex], причем [latex]sh\ x[/latex]— нечетная функция, а [latex]ch\ x[/latex] — четная функция.
Спойлер
[свернуть]
Из определения функций [latex]sh\ x[/latex] и [latex]ch\ x[/latex] следует, что
Функция [latex]th\ x[/latex] определена и непрерывна на [latex]\mathbb{R},[/latex] а функция [latex]cth\ x[/latex] определена и непрерывна на множестве [latex]\mathbb{R}[/latex] с выколотой точкой [latex]x= 0.[/latex] Обе функции нечетные.
Спойлер
[свернуть]
Утверждение 8
Пусть функции [latex]u(x)[/latex] и [latex]v(x)[/latex] определены на промежутке[latex]\Delta =\left ( a,b \right ),[/latex] причем для всех[latex]x \in \Delta[/latex] выполняется условие [latex]u(x)>0,[/latex] Тогда функцию [latex]y,[/latex] определяемую формулой
[latex]y=e^{v(x)\ln{u(x)}}[/latex]
будем называть показательно-степенной и обозначать
[latex]y=u(x)^{v(x)}[/latex]
Таким образом, исходя из определения
[latex]u(x)^{v(x)}=e^{v(x)\ln{u(x)}}[/latex]
Если [latex]u,v[/latex] — функции, непрерывные на [latex]\Delta,[/latex] то функция [latex]u^v[/latex] непрерывна на [latex]\Delta[/latex] как суперпозиция непрерывных функций [latex]e^t[/latex] и [latex]t = v(x)\ln{u(x)}[/latex].
Тест
Лимит времени: 0
Навигация (только номера заданий)
0 из 5 заданий окончено
Вопросы:
1
2
3
4
5
Информация
Непрерывность элементарных функций
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Результаты
Время вышло
Вы набрали 0 из 0 баллов (0)
Средний результат
Ваш результат
Рубрики
Нет рубрики0%
Математический анализ0%
Ваш результат был записан в таблицу лидеров
Загрузка
максимум из 16 баллов
Место
Имя
Записано
Баллы
Результат
Таблица загружается
Нет данных
1
2
3
4
5
С ответом
С отметкой о просмотре
Задание 1 из 5
1.
Выберите правильные утверждения
Правильно
Неправильно
Задание 2 из 5
2.
Установите соответствие
Элементы сортировки
Нечетная функция
Четная функция
$$sh\ x$$
$$ch\ x$$
Правильно
Неправильно
Задание 3 из 5
3.
Вставьте пропущенное слово в определение
Многочлен является (непрерывной) функцией на всей числовой прямой
Правильно
Неправильно
Задание 4 из 5
4.
Закончите определение: Пусть функции [latex]u(x)[/latex] и [latex]v(x)[/latex] определены на промежутке[latex]\Delta =\left ( a,b \right )[/latex] , причем для всех[latex]x \in \Delta[/latex] выполняется условие [latex]u(x)>0[/latex]. Тогда функцию [latex]y[/latex], определяемую формулой
[latex]y=e^{v(x)\ln{u(x)}}[/latex]
будем называть…
Правильно
Неправильно
Задание 5 из 5
5.
Оцените насколько нравится вам данный тест, где 1 — совсем ненравится,а 5 — очень нравится