Группа целых чисел по сложению (Z,+) циклическая. Её образующими элементами являются числа ±1.
Лемма
Каждая подгруппа циклической группы сама циклическая.
Доказательство
Пусть G=<g0>,H⊂G,G≠{1},gn0∈H,n∈N, n — наименьшее. Любой элемент g∈H можно выразить как g=gm0. Представим число m в виде m=nq+r, где 0≤r<n.
Поэтому gm0=gnq+r0=qnq0⋅gr0=(gn0)q⋅qr0⇒gr0==((gn0)q)−1⋅gm0⇒r=0⇒m⋮n. Следовательно, gm0=(gn0)r⇒H=<gn0>, т.е. подгруппа H — циклическая с образующим элементом gn0.
Литература
Белозёров Г.С. Конспект лекций по линейной алгебре
Пусть дана группа [latex](G, \cdot)[/latex]. Если [latex]\exists g_{0}\in G [/latex] такое, что [latex]\forall g\in G[/latex], [latex]\exists n\in \mathbb Z[/latex]: [latex]g=g_{0}^n[/latex], то [latex](G, \cdot)[/latex] называется циклической группой и пишут [latex]G=<g_{0}>_{n}[/latex], где [latex]g_{0}[/latex] образующая и количество элементов, порядок группы, [latex]|G|=n[/latex]. Циклическая группа [latex]G[/latex] называется конечной, если она имеет конечное число элементов, в противном случае группа называется бесконечной.
Теорема Пусть дана циклическая группа [latex](G, \cdot)[/latex] и [latex]G=<g_{0}>_{n}[/latex], тогда эта группа имеет следующий вид: [latex]G=\{ g_{0}^0=1, g_{0}, g_{0}^2, g_{0}^3, \dots, g_{0}^{n-1}\}[/latex].
Доказательство Для доказательства покажем что все элементы нашей группы различные, иначе количество элементов в группе будет меньше её порядка.
Пусть [latex]\exists i<j[/latex] такие, что [latex] 0\leq i<j \leq{n-1}[/latex] и [latex] g_{0}^{i} = g_{0}^{j}\Rightarrow[/latex] [latex]g_{0}^{j-i} = 1[/latex], тогда [latex]\exists m\in \mathbb Z : m=j-i[/latex], следовательно [latex]1\leq m\leq{n-1}[/latex] и [latex]g_{0}^m=1.[/latex] Отсюда [latex]\forall g\in G, g=g_{0}^t, t\in \mathbb Z[/latex] и [latex]t=mq+r, 0\leq r<m,[/latex] тогда [latex]g_{0}^t=g_{0}^{mq+r}=[/latex][latex](g_{0}^m)^q\cdot g_{0}^r\Rightarrow[/latex] [latex]g_{0}^t =1\cdot g_{0}^r=g_{0}^r[/latex], это значит что все элементы группы будут равны [latex]g_{0}^r[/latex], где [latex]\forall t\in \mathbb Z[/latex] существует свой [latex]r[/latex],но [latex]0\leq r<m[/latex], а [latex]1\leq m\leq{n-1}[/latex] мы получаем противоречие, поскольку мы не получим всю группу.
Таким образом [latex]G=\{ g_{0}^0=1, g_{0}, g_{0}^2, g_{0}^3, \dots, g_{0}^{n-1}\}[/latex].
Примеры циклическихгрупп [latex]A=\{1, 2, 2^2, 2^3, 2^4, 2^5, 2^6\}[/latex] — Конечная иклическая группа, поскольку каждый элемент является значением [latex]2^k, 0\leq k\leq 6[/latex], отсюда образующей этой группы является [latex]2[/latex] и [latex]A=<2>_{7}[/latex].
[latex]A=\{1,\frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \frac{1}{2^4}, \frac{1}{2^5}, \frac{1}{2^6} \}[/latex] — Конечная циклическая группа, каждый элемент является значением [latex](\frac{1}{2})^k, 0\leq k\leq 6[/latex], образующей является [latex]\frac12[/latex] и [latex]A=<\frac12>_{7}[/latex].